Cestellos-Blanco Stefano, Kim Ji Min, Watanabe Nicholas George, Chan Rachel Rebecca, Yang Peidong
Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
Department of Chemistry, University of California, Berkeley, CA, USA.
iScience. 2021 Aug 5;24(9):102952. doi: 10.1016/j.isci.2021.102952. eCollection 2021 Sep 24.
The conversion of CO to value-added products powered with solar energy is an ideal solution to establishing a closed carbon cycle. Combining microorganisms with light-harvesting nanomaterials into photosynthetic biohybrid systems (PBSs) presents an approach to reaching this solution. Metabolic pathways precisely evolved for CO fixation selectively and reliably generate products. Nanomaterials harvest solar light and biocompatibly associate with microorganisms owing to similar lengths scales. Although this is a nascent field, a variety of approaches have been implemented encompassing different microorganisms and nanomaterials. To advance the field in an impactful manner, it is paramount to understand the molecular underpinnings of PBSs. In this perspective, we highlight studies inspecting charge uptake pathways and singularities in photosensitized cells. We discuss further analyses to more completely elucidate these constructs, and we focus on criteria to be met for designing photosensitizing nanomaterials. As a result, we advocate for the pairing of microorganisms with naturally occurring and highly biocompatible mineral-based semiconductor nanomaterials.
将一氧化碳转化为太阳能驱动的增值产品是建立封闭碳循环的理想解决方案。将微生物与光捕获纳米材料结合到光合生物混合系统(PBS)中,是实现这一解决方案的一种途径。为二氧化碳固定精确进化的代谢途径能够选择性且可靠地生成产物。纳米材料能够捕获太阳光,并且由于长度尺度相似而与微生物具有生物相容性。尽管这是一个新兴领域,但已经实施了多种方法,涵盖了不同的微生物和纳米材料。为了以有影响力的方式推动该领域的发展,了解PBS的分子基础至关重要。从这个角度出发,我们重点介绍了检查光敏细胞中电荷吸收途径和特性的研究。我们讨论了进一步的分析,以更全面地阐明这些结构,并专注于设计光敏纳米材料需要满足的标准。因此,我们提倡将微生物与天然存在且具有高度生物相容性的矿物基半导体纳米材料配对。