Deng Jie, Li Jing, Song Shuang, Zhou Yanping, Li Luming
College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China.
Department of Chemical Engineering, Sichuan University, Chengdu 610065, China.
Nanomaterials (Basel). 2020 Feb 18;10(2):353. doi: 10.3390/nano10020353.
The carbon supercapacitance strongly relies upon the electrolyte's nature, but the clear-cut structure-performance nexus remains elusive. Herein, a series of bio-carbons with gradually varied pore structure and surface chemistry are derived using a new salt template protocol (with eco-benign KNO as the template, activator, and porogen, and cheap gelatin as the carbon precursor), and are used as model systems to probe the dependence of the electrochemical mechanism of such nanocarbons on two typical electrolytes (KOH and EMIBF). By only adjusting the KNO dosage, two pivotal figures of merit of biochar-multiscale porosity and surface functionalization-were finely modulated to construct electric double layers. Electrochemical data clarify that the combined porosity and doping effects all contribute to enhanced supercapacitance, but with only one of the two factors playing the leading role in different electrolytes. Kinetic analysis corroborates the fact that ample heteroatom doping can effectively compensate capacitance by intensive surface redox insertion in KOH, while a suitable pore size dispersion plays a preponderant part in self-amplifying the ion partitioning, and thus dictating a good charge separation in EMIBF. A quasi-quantitative model of performance-structure relevance in EMIBF is judiciously conjectured to hint at a superb ion-pore-size compatibility, in which bi- or mono-layer ion confinement coupling in integrated single and double ion-sized pores is found to be more useful for curbing notorious over-screening effects and for changing the coordination number, Coulombic ordering, and phase conformation of EMIBF in several nm-sized nanopores. This unique energy storage fashion in ion-matching pores promotes the energy density of optimal samples to a novel level of 88.3 Wh kg at 1 kW kg, which rivals the overwhelming majority of the reported carbon materials. In short, the comparison case study here reveals a valuable correlation of carbon's figure of merit and electrolyte type, which may act as a vital rudder to design electrolyte-contingent state-of-the-art supercapacitor materials.
碳超级电容强烈依赖于电解质的性质,但明确的结构-性能关系仍不明确。在此,使用一种新的盐模板协议(以环境友好的KNO作为模板、活化剂和成孔剂,以及廉价的明胶作为碳前驱体)制备了一系列具有逐渐变化的孔结构和表面化学性质的生物碳,并将其用作模型系统,以探究此类纳米碳的电化学机制对两种典型电解质(KOH和EMIBF)的依赖性。仅通过调整KNO的用量,就可以精细调节生物炭的两个关键性能指标——多尺度孔隙率和表面功能化,以构建双电层。电化学数据表明,孔隙率和掺杂效应共同作用增强了超级电容,但在不同电解质中,这两个因素中只有一个起主导作用。动力学分析证实,大量的杂原子掺杂可以通过在KOH中强烈的表面氧化还原插入有效地补偿电容,而合适的孔径分散在自我放大离子分配方面起主要作用,从而在EMIBF中实现良好的电荷分离。明智地推测了EMIBF中性能-结构相关性的准定量模型,以暗示极佳的离子-孔径兼容性,其中在集成的单离子和双离子尺寸的孔隙中发现的双层或单层离子限制耦合对于抑制臭名昭著的过屏蔽效应以及改变EMIBF在几纳米尺寸的纳米孔隙中的配位数、库仑有序和相构象更有用。这种在离子匹配孔隙中的独特储能方式将最佳样品的能量密度在1 kW kg时提高到了88.3 Wh kg的新水平,这与绝大多数已报道的碳材料相当。简而言之,这里的比较案例研究揭示了碳的性能指标与电解质类型之间的宝贵关联,这可能成为设计依赖于电解质的先进超级电容器材料的重要指南。