Sylla Ndeye F, Ndiaye Ndeye M, Ngom Balla D, Mutuma Bridget K, Momodu Damilola, Chaker Mohamed, Manyala Ncholu
Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028, South Africa.
Laboratoire de Photonique Quantique, d'Energie et de Nano-Fabrication, Faculté des Sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD) B.P. 5005 Dakar-Fann Dakar, Senegal.
J Colloid Interface Sci. 2020 Jun 1;569:332-345. doi: 10.1016/j.jcis.2020.02.061. Epub 2020 Feb 17.
Nitrogen (N) doping of porous carbon materials is an effective strategy for enhancing the electrochemical performance of electrode materials. Herein, we report on ex-situ (post) nitrogen-doped porous carbons prepared using a biomass waste, peanut shell (PS) as a carbon source and melamine as the nitrogen source. The synthesis method involved a two-step mechanism, initial chemical activation of the PS using KOH and post N-doping of the activated carbon. The effect of the activating agent/precursor ratio and the ex-situ N-doping on the structural, textural, electrochemical properties of the porous carbons was studied. The ex-situ N-doped porous carbon with an optimum amount of KOH to PS exhibited the best capacitance performance with a specific surface area (SSA) of 1442 m g and an enriched nitrogen content (3.2 at %). The fabricated symmetric device exhibited a 251.2 F g specific capacitance per electrode at a gravimetric current of 1 A g in aqueous electrolyte (2.5 M KNO) at a wide cell voltage of 2.0 V. A specific energy of 35 Wh kg with a corresponding specific power of 1 kW kg at 1 A g was delivered with the device still retaining up to 22 Wh kg and a 20 kW kg specific power even at 20 A g. Moreover, long term device stability was exhibited with an 83.2% capacity retention over 20 000 charge/discharge cycles and also a good rate capability after 180 h of floating at 5 A g. This great performance of the symmetric supercapacitor can be correlated to the surface porosity and post nitrogen-doping effect which increased the electrochemically-active sites resulting in a remarkable charge storage capability.
对多孔碳材料进行氮(N)掺杂是提高电极材料电化学性能的有效策略。在此,我们报道了一种非原位(后)氮掺杂多孔碳的制备方法,该方法以生物质废料花生壳(PS)为碳源、三聚氰胺为氮源。合成方法涉及两步机制,首先用KOH对PS进行化学活化,然后对活性炭进行后氮掺杂。研究了活化剂/前驱体比例和非原位氮掺杂对多孔碳的结构、织构、电化学性能的影响。KOH与PS比例最佳的非原位氮掺杂多孔碳表现出最佳的电容性能,比表面积(SSA)为1442 m²/g,氮含量丰富(3.2 at%)。所制备的对称器件在宽电池电压2.0 V的水性电解质(2.5 M KNO₃)中,在1 A/g的重量电流下,每个电极的比电容为251.2 F/g。该器件在1 A/g时的比能量为35 Wh/kg,相应的比功率为1 kW/kg,即使在20 A/g时仍能保持高达22 Wh/kg的比能量和20 kW/kg的比功率。此外,该器件表现出长期稳定性,在20000次充放电循环后容量保持率为83.2%,在5 A/g下漂浮180 h后也具有良好的倍率性能。这种对称超级电容器的优异性能可归因于表面孔隙率和后氮掺杂效应,这增加了电化学活性位点,从而产生了显著的电荷存储能力。