Suppr超能文献

实时矿用卡车道路边界检测与跟踪。

Real-Time Mine Road Boundary Detection and Tracking for Autonomous Truck.

机构信息

Waytous Inc., Beijing 100083, China.

School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Sensors (Basel). 2020 Feb 18;20(4):1121. doi: 10.3390/s20041121.

Abstract

Road boundary detection is an important part of the perception of the autonomous driving. It is difficult to detect road boundaries of unstructured roads because there are no curbs. There are no clear boundaries on mine roads to distinguish areas within the road boundary line and areas outside the road boundary line. This paper proposes a real-time road boundary detection and tracking method by a 3D-LIDAR sensor.The road boundary points are extracted from the detected elevated point clouds above the ground point cloud according to the spatial distance characteristics and the angular features. Road tracking is to predict and update the boundary point information in real-time, in order to prevent false and missed detection. The experimental verification of mine road data shows the accuracy and robustness of the proposed algorithm.

摘要

道路边界检测是自动驾驶感知的重要组成部分。由于没有路缘石,因此难以检测到非结构化道路的道路边界。矿区道路没有明确的边界来区分道路边界线内的区域和道路边界线外的区域。本文提出了一种基于 3D-LIDAR 传感器的实时道路边界检测和跟踪方法。根据空间距离特征和角度特征,从地面点云上方检测到的凸起点云中提取道路边界点。道路跟踪是实时预测和更新边界点信息,以防止误检和漏检。矿区道路数据的实验验证表明了所提出算法的准确性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d2b/7070413/8ca9ad45c2b8/sensors-20-01121-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验