Suppr超能文献

使用3D传感器和智能车辆进行道路轮廓估计

Road Profile Estimation Using a 3D Sensor and Intelligent Vehicle.

作者信息

Ni Tao, Li Wenhang, Zhao Dingxuan, Kong Zhifei

机构信息

School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China.

School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.

出版信息

Sensors (Basel). 2020 Jun 30;20(13):3676. doi: 10.3390/s20133676.

Abstract

Autonomous vehicles can achieve accurate localization and real-time road information perception using sensors such as global navigation satellite systems (GNSSs), light detection and ranging (LiDAR), and inertial measurement units (IMUs). With road information, vehicles can navigate autonomously to a given position without traffic accidents. However, most of the research on autonomous vehicles has paid little attention to road profile information, which is a significant reference for vehicles driving on uneven terrain. Most vehicles experience violent vibrations when driving on uneven terrain, which reduce the accuracy and stability of data obtained by LiDAR and IMUs. Vehicles with an active suspension system, on the other hand, can maintain stability on uneven roads, which further guarantees sensor accuracy. In this paper, we propose a novel method for road profile estimation using LiDAR and vehicles with an active suspension system. In the former, 3D laser scanners, IMU, and GPS were used to obtain accurate pose information and real-time cloud data points, which were added to an elevation map. In the latter, the elevation map was further processed by a Kalman filter algorithm to fuse multiple cloud data points at the same cell of the map. The model predictive control (MPC) method is proposed to control the active suspension system to maintain vehicle stability, thus further reducing drifts of LiDAR and IMU data. The proposed method was carried out in outdoor environments, and the experiment results demonstrated its accuracy and effectiveness.

摘要

自动驾驶车辆可以使用全球导航卫星系统(GNSS)、激光雷达(LiDAR)和惯性测量单元(IMU)等传感器实现精确的定位和实时道路信息感知。借助道路信息,车辆可以自主导航到给定位置而不会发生交通事故。然而,大多数关于自动驾驶车辆的研究很少关注道路轮廓信息,而道路轮廓信息对于在不平坦地形上行驶的车辆来说是一个重要的参考。大多数车辆在不平坦地形上行驶时会经历剧烈振动,这会降低激光雷达和IMU获取数据的准确性和稳定性。另一方面,配备主动悬架系统的车辆可以在不平坦道路上保持稳定,这进一步保证了传感器的准确性。在本文中,我们提出了一种使用激光雷达和配备主动悬架系统的车辆进行道路轮廓估计的新方法。在前者中,使用三维激光扫描仪、IMU和GPS来获取精确的位姿信息和实时云数据点,并将其添加到高程地图中。在后者中,通过卡尔曼滤波算法对高程地图进行进一步处理,以融合地图同一单元格中的多个云数据点。提出了模型预测控制(MPC)方法来控制主动悬架系统以保持车辆稳定性,从而进一步减少激光雷达和IMU数据的漂移。所提出的方法在室外环境中进行,实验结果证明了其准确性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59c5/7374417/e6fd9f99e37a/sensors-20-03676-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验