Suppr超能文献

STIC:预测癌症基因组中的单核苷酸变异和肿瘤纯度。

STIC: Predicting Single Nucleotide Variants and Tumor Purity in Cancer Genome.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2692-2701. doi: 10.1109/TCBB.2020.2975181. Epub 2021 Dec 8.

Abstract

Single nucleotide variant (SNV) plays an important role in cellular proliferation and tumorigenesis in various types of human cancer. Next-generation sequencing (NGS) has provided high-throughput data at an unprecedented resolution to predict SNVs. Currently, there exist many computational methods for either germline or somatic SNV discovery from NGS data, but very few of them are versatile enough to adapt to any situations. In the absence of matched normal samples, the prediction of somatic SNVs from single-tumor samples becomes considerably challenging, especially when the tumor purity is unknown. Here, we propose a new approach, STIC, to predict somatic SNVs and estimate tumor purity from NGS data without matched normal samples. The main features of STIC include: (1) extracting a set of SNV-relevant features on each site and training the BP neural network algorithm on the features to predict SNVs; (2) creating an iterative process to distinguish somatic SNVs from germline ones by disturbing allele frequency; and (3) establishing a reasonable relationship between tumor purity and allele frequencies of somatic SNVs to accurately estimate the purity. We quantitatively evaluate the performance of STIC on both simulation and real sequencing datasets, the results of which indicate that STIC outperforms competing methods.

摘要

单核苷酸变异(SNV)在各种人类癌症的细胞增殖和肿瘤发生中起着重要作用。下一代测序(NGS)以空前的分辨率提供了高通量数据,以预测 SNV。目前,存在许多用于从 NGS 数据中发现种系或体细胞 SNV 的计算方法,但很少有方法具有足够的通用性以适应任何情况。在没有匹配的正常样本的情况下,从单个肿瘤样本中预测体细胞 SNV 变得相当具有挑战性,特别是当肿瘤纯度未知时。在这里,我们提出了一种新方法 STIC,用于在没有匹配的正常样本的情况下从 NGS 数据中预测体细胞 SNV 并估计肿瘤纯度。STIC 的主要特点包括:(1)在每个位点提取一组与 SNV 相关的特征,并在特征上训练 BP 神经网络算法以预测 SNV;(2)通过干扰等位基因频率创建一个迭代过程来区分体细胞 SNV 和种系 SNV;(3)建立肿瘤纯度与体细胞 SNV 等位基因频率之间的合理关系,以准确估计纯度。我们在模拟和真实测序数据集上定量评估了 STIC 的性能,结果表明 STIC 优于竞争方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验