Suppr超能文献

基于单线程的快速显著目标检测的深度非局部模块。

Depthwise Nonlocal Module for Fast Salient Object Detection Using a Single Thread.

出版信息

IEEE Trans Cybern. 2021 Dec;51(12):6188-6199. doi: 10.1109/TCYB.2020.2969282. Epub 2021 Dec 22.

Abstract

Recently, deep convolutional neural networks have achieved significant success in salient object detection. However, existing state-of-the-art methods require high-end GPUs to achieve real-time performance, which makes it hard to adapt to low cost or portable devices. Although generic network architectures have been proposed to speed up inference on mobile devices, they are tailored to the task of image classification or semantic segmentation, and struggle to capture intrachannel and interchannel correlations that are essential for contrast modeling in salient object detection. Motivated by the above observations, we design a new deep-learning algorithm for fast salient object detection. The proposed algorithm for the first time achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread. Specifically, we propose a novel depthwise nonlocal module (DNL), which implicitly models contrast via harvesting intrachannel and interchannel correlations in a self-attention manner. In addition, we introduce a depthwise nonlocal network architecture that incorporates both DNLs module and inverted residual blocks. The experimental results show that our proposed network attains very competitive accuracy on a wide range of salient object detection datasets while achieving state-of-the-art efficiency among all existing deep-learning-based algorithms.

摘要

最近,深度卷积神经网络在显著目标检测方面取得了重大成功。然而,现有的最先进方法需要高端 GPU 才能实现实时性能,这使得它们难以适应低成本或便携式设备。虽然已经提出了通用的网络架构来加速移动设备上的推断,但它们是针对图像分类或语义分割任务量身定制的,难以捕捉到显著目标检测中对比建模所必需的通道内和通道间相关性。受上述观察的启发,我们设计了一种新的用于快速显著目标检测的深度学习算法。所提出的算法首次在单个 CPU 线程上同时实现了竞争准确性和高推断效率。具体来说,我们提出了一种新颖的深度非局部模块(DNL),它通过以自注意的方式采集通道内和通道间相关性来隐式建模对比度。此外,我们引入了一种深度非局部网络架构,该架构结合了 DNL 模块和反残差块。实验结果表明,我们提出的网络在广泛的显著目标检测数据集上实现了非常有竞争力的准确性,同时在所有现有的基于深度学习的算法中实现了最先进的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验