Suppr超能文献

基于分层视觉感知学习的轻量级显著目标检测。

Lightweight Salient Object Detection via Hierarchical Visual Perception Learning.

出版信息

IEEE Trans Cybern. 2021 Sep;51(9):4439-4449. doi: 10.1109/TCYB.2020.3035613. Epub 2021 Sep 15.

Abstract

Recently, salient object detection (SOD) has witnessed vast progress with the rapid development of convolutional neural networks (CNNs). However, the improvement of SOD accuracy comes with the increase in network depth and width, resulting in large network size and heavy computational overhead. This prevents state-of-the-art SOD methods from being deployed into practical platforms, especially mobile devices. To promote the deployment of real-world SOD applications, we aim at developing a lightweight SOD model in this article. Our observation comes from that the primate visual system processes visual signals hierarchically with different receptive fields and eccentricities in different visual cortex areas. Inspired by this, we propose a hierarchical visual perception (HVP) module to imitate the primate visual cortex for hierarchical perception learning. With the HVP module incorporated, we design a lightweight SOD network, namely, HVPNet. Extensive experiments on popular benchmarks demonstrate that HVPNet achieves highly competitive accuracy compared with state-of-the-art SOD methods while running at 4.3 frames/s CPU speed and 333.2 frames/s GPU speed with only 1.23M parameters.

摘要

最近,随着卷积神经网络(CNN)的快速发展,显著目标检测(SOD)取得了巨大的进展。然而,SOD 精度的提高伴随着网络深度和宽度的增加,导致网络规模庞大,计算开销繁重。这使得最先进的 SOD 方法无法部署到实际平台,特别是移动设备中。为了促进实际 SOD 应用的部署,我们旨在本文中开发一个轻量级 SOD 模型。我们的观察结果来自于灵长类动物视觉系统在不同的视觉皮层区域中以不同的感受野和偏心度进行分层处理视觉信号。受此启发,我们提出了一个分层视觉感知(HVP)模块来模拟灵长类动物视觉皮层进行分层感知学习。通过引入 HVP 模块,我们设计了一个轻量级的 SOD 网络,即 HVPNet。在流行的基准上进行的广泛实验表明,与最先进的 SOD 方法相比,HVPNet 在仅 1.23M 参数的情况下,在 4.3 帧/秒 CPU 速度和 333.2 帧/秒 GPU 速度下运行时,具有很高的竞争力的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验