Fougeron Nolwenn, Rohan Pierre-Yves, Haering Diane, Rose Jean-Loïc, Bonnet Xavier, Pillet Hélène
Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Paristech, 151 Boulevard de l'Hôpital, Paris 75013, France; Recherche et Développement, Proteor, 5 boulevard Winston Churchill, Dijon 21000, France.
Institut de Biomécanique Humaine Georges Charpak, Arts et Métiers Paristech, 151 Boulevard de l'Hôpital, Paris 75013, France.
J Biomech Eng. 2020 Sep 1;142(9). doi: 10.1115/1.4046444.
Finite element analysis (FEA) is a numerical modeling tool vastly employed in research facilities to analyze and predict load transmission between the human body and a medical device, such as a prosthesis or an exoskeleton. Yet, the use of finite element modeling (FEM) in a framework compatible with clinical constraints is hindered by, among others, heavy and time-consuming assessments of material properties. Ultrasound (U.S.) imaging opens new and unique opportunities for the assessment of in vivo material properties of soft tissues. Confident of these advances, a method combining a freehand U.S. probe and a force sensor was developed in order to compute the hyperelastic constitutive parameters of the soft tissues of the thigh in both relaxed (R) and contracted (C) muscles' configurations. Seven asymptomatic subjects were included for the experiment. Two operators in each configuration performed the acquisitions. Inverse FEM allowed for the optimization of an Ogden's hyperelastic constitutive model of soft tissues of the thigh in large displacement. The mean shear modulus identified for configurations R and C was, respectively, 3.2 ± 1.3 kPa and 13.7 ± 6.5 kPa. The mean alpha parameter identified for configurations R and C was, respectively, 10 ± 1 and 9 ± 4. An analysis of variance showed that the configuration had an effect on constitutive parameters but not on the operator.
有限元分析(FEA)是一种广泛应用于研究机构的数值建模工具,用于分析和预测人体与医疗设备(如假肢或外骨骼)之间的载荷传递。然而,在与临床限制条件兼容的框架中使用有限元建模(FEM),会受到诸多因素的阻碍,其中包括对材料特性进行繁重且耗时的评估。超声(U.S.)成像为评估软组织的体内材料特性带来了新的独特机遇。鉴于这些进展,开发了一种将徒手超声探头和力传感器相结合的方法,以计算大腿软组织在松弛(R)和收缩(C)肌肉构型下的超弹性本构参数。七名无症状受试者参与了该实验。每种构型由两名操作员进行采集。逆有限元法可对大腿软组织在大位移情况下的奥格登超弹性本构模型进行优化。在R和C构型下确定的平均剪切模量分别为3.2±1.3kPa和13.7±6.5kPa。在R和C构型下确定的平均α参数分别为10±1和9±4。方差分析表明,构型对本构参数有影响,但对操作员没有影响。