Suppr超能文献

从多模态压痕中识别双层软组织的本构材料。

Identification of constitutive materials of bi-layer soft tissues from multimodal indentations.

机构信息

Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa, Israel.

Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa, Israel.

出版信息

J Mech Behav Biomed Mater. 2024 Jul;155:106572. doi: 10.1016/j.jmbbm.2024.106572. Epub 2024 May 12.

Abstract

The personalisation of finite element models is an important problem in the biomechanical fields where subject-specific analyses are fundamental, particularly in studying soft tissue mechanics. The personalisation includes the choice of the constitutive law of the model's material, as well as the choice of the material parameters. In vivo identification of the material properties of soft tissues is challenging considering the complex behaviour of soft tissues that are, among other things, non-linear hyperelastic and heterogeneous. Hybrid experimental-numerical methods combining in vivo indentations and inverse finite element analyses are common to identify these material parameters. Yet, the uniqueness and the uncertainty of the multi-material hyperelastic model have not been evaluated. This study presents a sensitivity analysis performed on synthetic indentation data to investigate the identification uncertainties of the material parameters in a bi-material thigh phantom. Synthetic numerical data, used to replace experimental measurements, considered several measurement modalities: indenter force and displacement, stereo-camera 3D digital image correlation of the indented surface, and ultrasound B-mode images. A finite element model of the indentation was designed with either Ogden-Moerman or Mooney-Rivlin constitutive laws for both materials. The parameters' identifiability (i.e. the possibility of converging to a unique parameter set within an acceptable margin of error) was assessed with various cost functions formulated using the different synthetic data sets. The results underline the need for multiple experimental modalities to reduce the uncertainty of the identified parameters. Additionally, the experimental error can impede the identification of a unique parameter set, and the cost function depends on the constitutive law. This study highlights the need for sensitivity analyses before the design of the experimental protocol. Such studies can also be used to define the acceptable range of errors in the experimental measurement. Eventually, the impact of the evaluated uncertainty of the identified parameters should be further investigated according to the purpose of the finite element modelling.

摘要

有限元模型的个性化是生物力学领域的一个重要问题,其中基于个体的分析是基础,特别是在研究软组织力学方面。个性化包括模型材料本构律的选择,以及材料参数的选择。考虑到软组织的复杂行为,如非线性超弹性和各向异性等,对软组织的材料特性进行体内识别具有挑战性。结合体内压痕和逆有限元分析的混合实验-数值方法常用于识别这些材料参数。然而,多材料超弹性模型的唯一性和不确定性尚未得到评估。本研究通过对合成压痕数据进行敏感性分析,研究了双材料大腿模型中材料参数的识别不确定性。用于替代实验测量的合成数值数据考虑了几种测量模式:压头力和位移、压痕表面的立体相机 3D 数字图像相关,以及超声 B 模式图像。设计了一种压痕的有限元模型,两种材料均采用 Ogden-Moerman 或 Mooney-Rivlin 本构律。使用不同的合成数据集制定了各种代价函数,评估了参数的可识别性(即在可接受的误差范围内收敛到唯一参数集的可能性)。结果强调了需要多种实验模式来降低识别参数的不确定性。此外,实验误差会阻碍唯一参数集的识别,并且代价函数取决于本构律。本研究强调了在设计实验方案之前进行敏感性分析的必要性。此类研究还可用于定义实验测量中允许的误差范围。最终,应根据有限元建模的目的进一步研究所评估的识别参数不确定性的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验