Demchenko A P
A. V. Palladin Institute of Biochemistry, Ukrainian SSR Academy of Sciences, Kiev, USSR.
Eur Biophys J. 1988;16(2):121-9. doi: 10.1007/BF00255522.
With the aim of finding non-equilibrium dipole-relaxational electronic excited states of tryptophan residues in proteins the dependence of the fluorescence emission maximum on excitation wavelength was studied for several proteins containing a single tryptophan residue per molecule. Spectral shifts upon red-edge excitation are not observed for short wavelength-emitting proteins (azurin, two-calcium form of whiting parvalbumin, ribonucleases C2 and T1). This may be because of the non-polar environment of the tryptophan residues in these proteins or because of the absence of dipole-orientational broadening of spectra. The effect was also not found for proteins emitting at long wavelengths (max. at 341-350 nm)-melittin at low ionic strength, IT-Aj1 protease inhibitor, myelin basic protein. In these proteins, the tryptophan residues are exposed to the rapidly relaxing aqueous solvent. Spectral shifts associated with red-edge excitation are observed for proteins emitting in the medium spectral range - human serum albumin in the N and F forms, IT-Aj1 protease inhibitor at pH 2.9, melittin at high ionic strength as well as the albumin-dodecyl-sulfate complex. This suggests the existence in these proteins of a distribution of microstates for tryptophan environment with various orientation of dipoles and of slow (on the nanosecond time scale) mobility of the field of these dipoles. As a result the emission proceeds from electronic excited states which are not at equilibrium.
为了寻找蛋白质中色氨酸残基的非平衡偶极子弛豫电子激发态,对几种每个分子含有单个色氨酸残基的蛋白质,研究了荧光发射最大值对激发波长的依赖性。对于短波长发射的蛋白质(天青蛋白、鳕鱼小清蛋白的双钙形式、核糖核酸酶C2和T1),未观察到红边激发时的光谱位移。这可能是由于这些蛋白质中色氨酸残基的非极性环境,或者是由于不存在光谱的偶极子取向展宽。对于长波长发射的蛋白质(最大发射波长在341 - 350 nm)——低离子强度下的蜂毒肽、IT - Aj1蛋白酶抑制剂、髓鞘碱性蛋白,也未发现这种效应。在这些蛋白质中,色氨酸残基暴露于快速弛豫的水性溶剂中。对于在中等光谱范围内发射的蛋白质——N和F形式的人血清白蛋白、pH 2.9时的IT - Aj1蛋白酶抑制剂、高离子强度下的蜂毒肽以及白蛋白 - 十二烷基硫酸盐复合物,观察到了与红边激发相关的光谱位移。这表明在这些蛋白质中存在色氨酸环境的微态分布,其偶极子具有不同取向,并且这些偶极子场具有缓慢(在纳秒时间尺度上)的迁移率。结果,发射来自非平衡的电子激发态。