Suppr超能文献

放射组学特征预测 I 期非小细胞肺癌无复发生存。

Radiomics Signature Predicts the Recurrence-Free Survival in Stage I Non-Small Cell Lung Cancer.

机构信息

Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.

出版信息

Ann Thorac Surg. 2020 Jun;109(6):1741-1749. doi: 10.1016/j.athoracsur.2020.01.010. Epub 2020 Feb 20.

Abstract

BACKGROUND

We aimed to explore the predictive value of radiomics signature for the recurrence-free survival (RFS) in patients with resected stage I non-small cell lung cancer.

METHODS

From January 2009 to December 2011, patients with resected stage I non-small cell lung cancer were divided into sub-solid and pure-solid groups according to presence of ground glass opacity in computed tomography. A total of 107 extracted radiomics features were reduced to 8 features by using LASSO Cox analysis to develop a radiomics signature for RFS prediction. Univariate and multivariate survival analyses were applied to identify independent prognostic variables, the Harrell concordance index (C-index) was measured to assess their prediction performance.

RESULTS

Our study included 378 patients with a median follow-up time of 63.2 months. The radiomics signature could stratify all patients into high-risk (180 of 378) and low-risk group (198 of 378) with different RFS (P < .001). In the sub-solid group (n = 115), 3 patients who occurred relapse were categorized into the high-risk group by the radiomics signature. In the pure-solid group, patients with low risk (141 of 263) had a better outcome than those with high risk (122 of 263) (P < .001). Multivariate analyses revealed that the histology (P < .001) and the developed radiomics signature (P < .001) remained independent prognostic factors for RFS.

CONCLUSIONS

Radiomics signature may be an independent imaging biomarker for predicting the survival, which may guide for personalizing treatment option in patients with stage I non-small cell lung cancer.

摘要

背景

本研究旨在探讨基于影像组学特征的预测模型在可切除Ⅰ期非小细胞肺癌患者无复发生存(RFS)中的预测价值。

方法

回顾性分析 2009 年 1 月至 2011 年 12 月期间接受手术治疗的Ⅰ期非小细胞肺癌患者的临床病理资料。根据 CT 上是否存在磨玻璃影,将患者分为部分实性和纯实性两组。采用 LASSO Cox 分析筛选与 RFS 相关的影像组学特征,建立预测 RFS 的影像组学模型。采用单因素和多因素生存分析确定独立的预后因素,通过 Harrell 一致性指数(C 指数)评估模型的预测效能。

结果

本研究共纳入 378 例患者,中位随访时间为 63.2 个月。基于影像组学特征建立的预测模型可以将所有患者分为高风险组(180/378)和低风险组(198/378),两组患者的 RFS 差异具有统计学意义(P<0.001)。在部分实性组(n=115)中,有 3 例复发患者被模型预测为高风险。在纯实性组中,低风险组(141/263)患者的生存情况优于高风险组(122/263)(P<0.001)。多因素分析显示,组织学类型(P<0.001)和建立的影像组学模型(P<0.001)是 RFS 的独立预后因素。

结论

影像组学特征可能是预测Ⅰ期非小细胞肺癌患者生存的独立影像学标志物,有助于指导个体化治疗方案的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验