Suppr超能文献

放射组学特征:预测早期(I 期或 II 期)非小细胞肺癌无病生存的潜在生物标志物。

Radiomics Signature: A Potential Biomarker for the Prediction of Disease-Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer.

机构信息

From the Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, China (Y.H., Z.L., L.H., D.P., Z.M., Cuishan Liang, Changhong Liang); Graduate College, Southern Medical University, Guangzhou, China (Y.H., Z.M., Cuishan Liang); School of Medicine, South China University of Technology, Guangzhou, Guangdong, China (L.H.); Department of Radiology, the Affiliated Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (X.C.); Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China (J.T.).

出版信息

Radiology. 2016 Dec;281(3):947-957. doi: 10.1148/radiol.2016152234. Epub 2016 Jun 27.

Abstract

Purpose To develop a radiomics signature to estimate disease-free survival (DFS) in patients with early-stage (stage I-II) non-small cell lung cancer (NSCLC) and assess its incremental value to the traditional staging system and clinical-pathologic risk factors for individual DFS estimation. Materials and Methods Ethical approval by the institutional review board was obtained for this retrospective analysis, and the need to obtain informed consent was waived. This study consisted of 282 consecutive patients with stage IA-IIB NSCLC. A radiomics signature was generated by using the least absolute shrinkage and selection operator, or LASSO, Cox regression model. Association between the radiomics signature and DFS was explored. Further validation of the radiomics signature as an independent biomarker was performed by using multivariate Cox regression. A radiomics nomogram with the radiomics signature incorporated was constructed to demonstrate the incremental value of the radiomics signature to the traditional staging system and other clinical-pathologic risk factors for individualized DFS estimation, which was then assessed with respect to calibration, discrimination, reclassification, and clinical usefulness. Results The radiomics signature was significantly associated with DFS, independent of clinical-pathologic risk factors. Incorporating the radiomics signature into the radiomics-based nomogram resulted in better performance (P < .0001) for the estimation of DFS (C-index: 0.72; 95% confidence interval [CI]: 0.71, 0.73) than with the clinical-pathologic nomogram (C-index: 0.691; 95% CI: 0.68, 0.70), as well as a better calibration and improved accuracy of the classification of survival outcomes (net reclassification improvement: 0.182; 95% CI: 0.02, 0.31; P = .02). Decision curve analysis demonstrated that in terms of clinical usefulness, the radiomics nomogram outperformed the traditional staging system and the clinical-pathologic nomogram. Conclusion The radiomics signature is an independent biomarker for the estimation of DFS in patients with early-stage NSCLC. Combination of the radiomics signature, traditional staging system, and other clinical-pathologic risk factors performed better for individualized DFS estimation in patients with early-stage NSCLC, which might enable a step forward precise medicine. RSNA, 2016 Online supplemental material is available for this article.

摘要

目的

开发一种放射组学特征,以评估早期(Ⅰ期-Ⅱ期)非小细胞肺癌(NSCLC)患者的无病生存(DFS),并评估其对传统分期系统和用于个体 DFS 估计的临床病理危险因素的增量价值。

材料与方法

本回顾性分析获得了机构审查委员会的伦理批准,且豁免了获得知情同意的要求。该研究纳入了 282 例连续的ⅠA-ⅡB 期 NSCLC 患者。采用最小绝对值收缩和选择算子(LASSO)Cox 回归模型生成放射组学特征。探讨放射组学特征与 DFS 的相关性。采用多变量 Cox 回归进一步验证放射组学特征作为独立生物标志物的能力。构建包含放射组学特征的放射组学列线图,以展示放射组学特征对传统分期系统和其他临床病理危险因素进行个体化 DFS 估计的增量价值,然后评估其校准度、判别能力、重新分类和临床实用性。

结果

放射组学特征与 DFS 显著相关,独立于临床病理危险因素。将放射组学特征纳入放射组学列线图可改善 DFS 估计的性能(P<.0001)(C 指数:0.72;95%置信区间[CI]:0.71,0.73),优于临床病理列线图(C 指数:0.691;95%CI:0.68,0.70),且校准度更好,生存结局的分类准确性提高(净重新分类改善:0.182;95%CI:0.02,0.31;P=.02)。决策曲线分析表明,在临床实用性方面,放射组学列线图优于传统分期系统和临床病理列线图。

结论

放射组学特征是评估早期 NSCLC 患者 DFS 的独立生物标志物。放射组学特征、传统分期系统和其他临床病理危险因素的组合可更好地用于早期 NSCLC 患者的个体化 DFS 估计,这可能使精准医疗更进一步。

放射学会,2016 年

在线补充材料可在本文中获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验