Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Women & Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.
Gene Expr Patterns. 2020 Jan;35:119100. doi: 10.1016/j.gep.2020.119100. Epub 2020 Feb 21.
Cryptochromes (Cry) are ancient flavoproteins known to regulate circadian rhythms. In plants and some animals, Cry is sensitive to blue light due to its ability to bind the chromophore flavin adenine dinucleotide (FAD). Cry is also suggested to function in magnetoreception, since it can create light-dependent radical pairs with FAD that are sensitive to magnetic fields (Ritz2000; Liedvogel et al., 2007; Solov'yov et al., 2014). Cry is expressed in the visual system of various animals and specifically co-localizes with both short- and long-wavelength cone photoreceptors in birds (Bischof et al., 2011; Günther et al., 2018). However, magnetoreception is not limited to birds and the expression of cry genes in the photoreceptors of other vertebrates is unknown. Here, we use zebrafish to examine the retinal expression pattern of cry family genes. Zebrafish have seven cry genes and while most are known regulators of the circadian clock, relatively little is known about cry2 and cry4 (Haug et al., 2015; Liu et al., 2015). Therefore, we explored cry2 and cry4 expression in the larval and adult zebrafish retina. We demonstrate that cry4 is predominantly expressed in the short-wavelength ultraviolet (UV)-sensitive cone photoreceptors, while cry2 is expressed in UV cones and additional retinal photoreceptors during the day. Using Nitroreductase (NTZ)-mediated cell ablation and qRT-PCR, we find that cry4 expression significantly decreases when UV cones are ablated, but not when the neighboring short-wavelength sensitive blue cones are ablated. cry2 expression decreases after UV cone ablation but is still significantly detectable, while blue cone ablation does not alter cry2 expression. This study provides a more detailed annotation of cry2 and cry4 expression in the zebrafish retina and highlights the feasibility of a well-established ablation paradigm to test if photoreceptors are required for magnetoreception in fish. Although evidence of magnetoreception in adult zebrafish has gained considerable evidence over the last decade (Shcherbakov et al., 2005; Takebe et al., 2012; Krylov et al., 2016; Myklatun et al., 2018) the mediating mechanism(s) remain unknown. Additionally, despite limited evidence that larval zebrafish are magnetoreceptive, many other larval fish have a characterized magnetic sense; sockeye salmon fry, larval coral reef fish, larval medaka and larval Atlantic haddock have been shown to be responsive to magnetic fields (Quinn; 1980; Bottesch et al., 2016; O'Connor and Muheim. 2017; Myklatun et al., 2018; Cresci, et al. 2019). If cry-cone interactions are conserved within fish, our findings may suggest one potential mechanism, such that UV cones appear poised for light-dependent magnetoreception via photoreceptor subtype-specific expression of cry.
隐花色素(Cry)是一种古老的黄素蛋白,已知其能调节生物钟。在植物和一些动物中,Cry 能够结合发色团黄素腺嘌呤二核苷酸(FAD),因此对蓝光敏感。Cry 也被认为在磁受体中起作用,因为它可以与 FAD 形成光依赖性自由基对,而这些自由基对对磁场敏感(Ritz2000;Liedvogel 等人,2007;Solov'yov 等人,2014)。Cry 在各种动物的视觉系统中表达,并且在鸟类中与短波长和长波长视锥细胞特异性共定位(Bischof 等人,2011;Günther 等人,2018)。然而,磁受体并不局限于鸟类,其他脊椎动物视锥细胞中 cry 基因的表达尚不清楚。在这里,我们使用斑马鱼来研究 cry 家族基因在视网膜中的表达模式。斑马鱼有 7 个 cry 基因,虽然大多数已知是生物钟的调节剂,但对 cry2 和 cry4 的了解相对较少(Haug 等人,2015;Liu 等人,2015)。因此,我们在斑马鱼幼虫和成年视网膜中探索了 cry2 和 cry4 的表达。我们证明 cry4 主要在短波长紫外线(UV)敏感的视锥细胞中表达,而 cry2 在白天则在 UV 视锥细胞和其他视网膜感光细胞中表达。通过 Nitroreductase(NTZ)介导的细胞消融和 qRT-PCR,我们发现当 UV 视锥细胞被消融时,cry4 的表达显著降低,但当相邻的短波长敏感蓝视锥细胞被消融时,cry4 的表达并没有降低。当 UV 视锥细胞被消融时,cry2 的表达减少,但仍可明显检测到,而蓝视锥细胞的消融不会改变 cry2 的表达。这项研究为斑马鱼视网膜中 cry2 和 cry4 的表达提供了更详细的注释,并强调了一种成熟的消融范例的可行性,该范例可用于测试视锥细胞是否是鱼类磁受体所必需的。尽管在过去十年中,成年斑马鱼的磁受体获得了相当多的证据(Shcherbakov 等人,2005;Takebe 等人,2012;Krylov 等人,2016;Myklatun 等人,2018),但其介导机制仍不清楚。此外,尽管有有限的证据表明幼虫斑马鱼具有磁受体,但许多其他幼虫鱼类已经具有特征性的磁感觉;大麻哈鱼幼鱼、珊瑚礁鱼类幼虫、黄斑鱼幼虫和大西洋鳕鱼幼鱼对磁场有反应(Quinn;1980;Bottesch 等人,2016;O'Connor 和 Muheim。2017;Myklatun 等人,2018;Cresci 等人,2019)。如果 cry-视锥细胞相互作用在鱼类中是保守的,那么我们的发现可能表明了一种潜在的机制,即通过视锥细胞亚型特异性表达 cry,UV 视锥细胞可能为光依赖性磁受体做好了准备。