Suppr超能文献

鸟类视网膜中隐花色素基因的表达模式表明 Cry4 参与了光依赖性磁受体。

Expression patterns of cryptochrome genes in avian retina suggest involvement of Cry4 in light-dependent magnetoreception.

机构信息

Department of Biology, Lund University, Biology Building B, Lund 223 62, Sweden

Department of Biology, Lund University, Ecology Building, Lund 223 62, Sweden.

出版信息

J R Soc Interface. 2018 Mar;15(140). doi: 10.1098/rsif.2018.0058.

Abstract

The light-dependent magnetic compass of birds provides orientation information about the spatial alignment of the geomagnetic field. It is proposed to be located in the avian retina, and be mediated by a light-induced, biochemical radical-pair mechanism involving cryptochromes as putative receptor molecules. At the same time, cryptochromes are known for their role in the negative feedback loop in the circadian clock. We measured gene expression of Cry1, Cry2 and Cry4 in the retina, muscle and brain of zebra finches over the circadian day to assess whether they showed any circadian rhythmicity. We hypothesized that retinal cryptochromes involved in magnetoreception should be expressed at a constant level over the circadian day, because birds use a light-dependent magnetic compass for orientation not only during migration, but also for spatial orientation tasks in their daily life. Cryptochromes serving in circadian tasks, on the other hand, are expected to be expressed in a rhythmic (circadian) pattern. Cry1 and Cry2 displayed a daily variation in the retina as expected for circadian clock genes, while Cry4 expressed at constant levels over time. We conclude that Cry4 is the most likely candidate magnetoreceptor of the light-dependent magnetic compass in birds.

摘要

鸟类的光依赖磁罗盘为其提供关于地磁场空间排列的方向信息。该罗盘据推测位于鸟类的视网膜中,由光诱导的、涉及隐花色素的生化自由基对机制介导,而隐花色素作为潜在的受体分子参与其中。同时,隐花色素在生物钟的负反馈回路中起着重要作用。我们测量了在昼夜周期内,斑马雀的视网膜、肌肉和大脑中的 Cry1、Cry2 和 Cry4 的基因表达,以评估它们是否表现出任何昼夜节律性。我们假设参与磁感受的视网膜隐花色素应在昼夜周期内保持稳定的表达水平,因为鸟类不仅在迁徙期间,而且在日常生活中的空间定向任务中,都使用光依赖的磁罗盘。另一方面,用于生物钟任务的隐花色素预计会以有节奏的(昼夜)模式表达。Cry1 和 Cry2 如预期的生物钟基因一样,在视网膜中呈现出每日变化,而 Cry4 则随时间保持恒定水平表达。因此,我们得出结论,Cry4 是鸟类光依赖磁罗盘中最有可能的磁受体候选者。

相似文献

2
Zebra finches have a light-dependent magnetic compass similar to migratory birds.
J Exp Biol. 2017 Apr 1;220(Pt 7):1202-1209. doi: 10.1242/jeb.148098.
3
Double-Cone Localization and Seasonal Expression Pattern Suggest a Role in Magnetoreception for European Robin Cryptochrome 4.
Curr Biol. 2018 Jan 22;28(2):211-223.e4. doi: 10.1016/j.cub.2017.12.003. Epub 2018 Jan 4.
4
Cryptochrome expression in avian UV cones: revisiting the role of CRY1 as magnetoreceptor.
Sci Rep. 2021 Jun 16;11(1):12683. doi: 10.1038/s41598-021-92056-8.
5
Polarized light modulates light-dependent magnetic compass orientation in birds.
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1654-9. doi: 10.1073/pnas.1513391113. Epub 2016 Jan 25.
6
Analysis of zebrafish cryptochrome2 and 4 expression in UV cone photoreceptors.
Gene Expr Patterns. 2020 Jan;35:119100. doi: 10.1016/j.gep.2020.119100. Epub 2020 Feb 21.
7
A novel isoform of cryptochrome 4 (Cry4b) is expressed in the retina of a night-migratory songbird.
Sci Rep. 2020 Sep 25;10(1):15794. doi: 10.1038/s41598-020-72579-2.
8
Localisation of cryptochrome 2 in the avian retina.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 Jan;208(1):69-81. doi: 10.1007/s00359-021-01506-1. Epub 2021 Oct 22.

引用本文的文献

1
Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation.
Pigment Cell Melanoma Res. 2025 Jan;38(1):e13220. doi: 10.1111/pcmr.13220.
2
Clock Gene Expression in Eel Retina and Hypothalamus: Response to Photoperiod and Moonlight.
J Exp Zool A Ecol Integr Physiol. 2025 Jan;343(1):81-94. doi: 10.1002/jez.2870. Epub 2024 Oct 7.
3
Magnetic orientation in juvenile Atlantic herring () could involve cryptochrome 4 as a potential magnetoreceptor.
J R Soc Interface. 2024 Jun;21(215):20240035. doi: 10.1098/rsif.2024.0035. Epub 2024 Jun 5.
5
Cryptochromes in mammals: a magnetoreception misconception?
Front Physiol. 2023 Aug 21;14:1250798. doi: 10.3389/fphys.2023.1250798. eCollection 2023.
7
Tracking the Electron Transfer Cascade in European Robin Cryptochrome 4 Mutants.
J Am Chem Soc. 2023 May 31;145(21):11566-11578. doi: 10.1021/jacs.3c00442. Epub 2023 May 17.
8
The Gain and Loss of Cryptochrome/Photolyase Family Members during Evolution.
Genes (Basel). 2022 Sep 8;13(9):1613. doi: 10.3390/genes13091613.
9
Chronobiology Meets Quantum Biology: A New Paradigm Overlooking the Horizon?
Front Physiol. 2022 Jul 6;13:892582. doi: 10.3389/fphys.2022.892582. eCollection 2022.
10
Radical Scavenging Could Answer the Challenge Posed by Electron-Electron Dipolar Interactions in the Cryptochrome Compass Model.
JACS Au. 2021 Oct 5;1(11):2033-2046. doi: 10.1021/jacsau.1c00332. eCollection 2021 Nov 22.

本文引用的文献

1
Double-Cone Localization and Seasonal Expression Pattern Suggest a Role in Magnetoreception for European Robin Cryptochrome 4.
Curr Biol. 2018 Jan 22;28(2):211-223.e4. doi: 10.1016/j.cub.2017.12.003. Epub 2018 Jan 4.
2
Zebra finches have a light-dependent magnetic compass similar to migratory birds.
J Exp Biol. 2017 Apr 1;220(Pt 7):1202-1209. doi: 10.1242/jeb.148098.
3
Vertebrate Cryptochromes are Vestigial Flavoproteins.
Sci Rep. 2017 Mar 20;7:44906. doi: 10.1038/srep44906.
4
Phylogenetic and Functional Classification of the Photolyase/Cryptochrome Family.
Photochem Photobiol. 2017 Jan;93(1):104-111. doi: 10.1111/php.12676. Epub 2017 Jan 18.
5
The Radical-Pair Mechanism of Magnetoreception.
Annu Rev Biophys. 2016 Jul 5;45:299-344. doi: 10.1146/annurev-biophys-032116-094545. Epub 2016 May 16.
6
Electron spin relaxation in cryptochrome-based magnetoreception.
Phys Chem Chem Phys. 2016 May 14;18(18):12443-56. doi: 10.1039/c5cp06731f. Epub 2016 Mar 29.
7
Localisation of the Putative Magnetoreceptive Protein Cryptochrome 1b in the Retinae of Migratory Birds and Homing Pigeons.
PLoS One. 2016 Mar 8;11(3):e0147819. doi: 10.1371/journal.pone.0147819. eCollection 2016.
8
Seasonally Changing Cryptochrome 1b Expression in the Retinal Ganglion Cells of a Migrating Passerine Bird.
PLoS One. 2016 Mar 8;11(3):e0150377. doi: 10.1371/journal.pone.0150377. eCollection 2016.
9
Environmental Regulation of Heterosis in the Allopolyploid Arabidopsis suecica.
Plant Physiol. 2016 Apr;170(4):2251-63. doi: 10.1104/pp.16.00052. Epub 2016 Feb 19.
10
Polarized light modulates light-dependent magnetic compass orientation in birds.
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1654-9. doi: 10.1073/pnas.1513391113. Epub 2016 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验