Suppr超能文献

脑电功能连接是因果脑相互作用的弱预测指标。

EEG Functional Connectivity is a Weak Predictor of Causal Brain Interactions.

机构信息

Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584CM, Utrecht, The Netherlands.

Department of Electrical Engineering, Eindhoven University of Technology, 5612AZ, Eindhoven, The Netherlands.

出版信息

Brain Topogr. 2020 Mar;33(2):221-237. doi: 10.1007/s10548-020-00757-6. Epub 2020 Feb 24.

Abstract

In recent years there has been an explosion of research evaluating resting-state brain functional connectivity (FC) using different modalities. However, the relationship between such measures of FC and the underlying causal brain interactions has not been well characterized. To further characterize this relationship, we assessed the relationship between electroencephalography (EEG) resting state FC and propagation of transcranial magnetic stimulation (TMS) evoked potentials (TEPs) at the sensor and source level in healthy participants. TMS was applied to six different cortical regions in ten healthy individuals (9 male; 1 female), and effects on brain activity were measured using simultaneous EEG. Pre-stimulus FC was assessed using five different FC measures (Pearson's correlation, mutual information, weighted phase lag index, coherence and phase locking value). Propagation of the TEPs was quantified as the root mean square (RMS) of the TEP voltage and current source density (CSD) at the sensor and source level, respectively. The relationship between pre-stimulus FC and the spatial distribution of TEP activity was determined using a generalized linear model (GLM) analysis. On the group level, all FC measures correlated significantly with TEP activity over the early (15-75 ms) and full range (15-400 ms) of the TEP at the sensor and source level. However, the predictive value of all FC measures is quite limited, accounting for less than 10% of the variance of TEP activity, and varies substantially across participants and stimulation sites. Taken together, these results suggest that EEG functional connectivity studies in sensor and source space should be interpreted with caution.

摘要

近年来,使用不同模式评估静息态大脑功能连接(FC)的研究呈爆炸式增长。然而,这些 FC 测量值与潜在的因果大脑相互作用之间的关系尚未得到很好的描述。为了进一步描述这种关系,我们评估了健康参与者的脑电图(EEG)静息状态 FC 与经颅磁刺激(TMS)诱发电位(TEP)在传感器和源水平上传播之间的关系。TMS 应用于十个健康个体(9 名男性;1 名女性)的六个不同皮质区域,并用同步 EEG 测量大脑活动的影响。使用五种不同的 FC 测量方法(Pearson 相关系数、互信息、加权相位滞后指数、相干性和锁相值)评估预刺激 FC。在传感器和源水平上,分别通过均方根(RMS)来量化 TEPs 的传播和电流源密度(CSD)。使用广义线性模型(GLM)分析来确定预刺激 FC 与 TEP 活动的空间分布之间的关系。在组水平上,所有 FC 测量值与传感器和源水平上的 TEP 早期(15-75ms)和全范围(15-400ms)的活动显著相关。然而,所有 FC 测量值的预测价值非常有限,仅占 TEP 活动方差的不到 10%,并且在参与者和刺激部位之间有很大差异。总之,这些结果表明,在传感器和源空间进行的 EEG 功能连接研究应谨慎解释。

相似文献

1
EEG Functional Connectivity is a Weak Predictor of Causal Brain Interactions.
Brain Topogr. 2020 Mar;33(2):221-237. doi: 10.1007/s10548-020-00757-6. Epub 2020 Feb 24.
2
Characterizing and minimizing the contribution of sensory inputs to TMS-evoked potentials.
Brain Stimul. 2019 Nov-Dec;12(6):1537-1552. doi: 10.1016/j.brs.2019.07.009. Epub 2019 Jul 17.
3
The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies.
Neuroimage. 2019 Jan 15;185:300-312. doi: 10.1016/j.neuroimage.2018.10.052. Epub 2018 Oct 19.
4
Identification and verification of a 'true' TMS evoked potential in TMS-EEG.
J Neurosci Methods. 2022 Aug 1;378:109651. doi: 10.1016/j.jneumeth.2022.109651. Epub 2022 Jun 14.
5
Investigating the Origin of TMS-evoked Brain Potentials Using Topographic Analysis.
Brain Topogr. 2022 Nov;35(5-6):583-598. doi: 10.1007/s10548-022-00917-w. Epub 2022 Oct 26.
6
Tracking Dynamic Interactions Between Structural and Functional Connectivity: A TMS/EEG-dMRI Study.
Brain Connect. 2017 Mar;7(2):84-97. doi: 10.1089/brain.2016.0462. Epub 2017 Mar 3.
7
Test-retest reliability of transcranial magnetic stimulation EEG evoked potentials.
Brain Stimul. 2018 May-Jun;11(3):536-544. doi: 10.1016/j.brs.2017.12.010. Epub 2017 Dec 29.
8
Alpha-band cortico-cortical phase synchronization is associated with effective connectivity in the motor network.
Clin Neurophysiol. 2021 Oct;132(10):2473-2480. doi: 10.1016/j.clinph.2021.06.025. Epub 2021 Jul 30.
9
Identifying site- and stimulation-specific TMS-evoked EEG potentials using a quantitative cosine similarity metric.
PLoS One. 2020 Jan 13;15(1):e0216185. doi: 10.1371/journal.pone.0216185. eCollection 2020.
10
Effects of antiepileptic drugs on cortical excitability in humans: A TMS-EMG and TMS-EEG study.
Hum Brain Mapp. 2019 Mar;40(4):1276-1289. doi: 10.1002/hbm.24448. Epub 2018 Dec 13.

引用本文的文献

1
Effects of gender and age on sleep EEG functional connectivity differences in subjects with mild difficulty falling asleep.
Front Psychiatry. 2024 Jul 9;15:1433316. doi: 10.3389/fpsyt.2024.1433316. eCollection 2024.
3
A structured ICA-based process for removing auditory evoked potentials.
Sci Rep. 2022 Jan 26;12(1):1391. doi: 10.1038/s41598-022-05397-3.

本文引用的文献

2
Identifying site- and stimulation-specific TMS-evoked EEG potentials using a quantitative cosine similarity metric.
PLoS One. 2020 Jan 13;15(1):e0216185. doi: 10.1371/journal.pone.0216185. eCollection 2020.
3
Subcortical electrophysiological activity is detectable with high-density EEG source imaging.
Nat Commun. 2019 Feb 14;10(1):753. doi: 10.1038/s41467-019-08725-w.
4
A Comparison of Evoked and Non-evoked Functional Networks.
Brain Topogr. 2019 May;32(3):405-417. doi: 10.1007/s10548-018-0692-1. Epub 2018 Dec 6.
5
The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies.
Neuroimage. 2019 Jan 15;185:300-312. doi: 10.1016/j.neuroimage.2018.10.052. Epub 2018 Oct 19.
6
EEG-triggered TMS reveals stronger brain state-dependent modulation of motor evoked potentials at weaker stimulation intensities.
Brain Stimul. 2019 Jan-Feb;12(1):110-118. doi: 10.1016/j.brs.2018.09.009. Epub 2018 Sep 21.
8
A novel concurrent TMS-fMRI method to reveal propagation patterns of prefrontal magnetic brain stimulation.
Hum Brain Mapp. 2018 Nov;39(11):4580-4592. doi: 10.1002/hbm.24307. Epub 2018 Aug 29.
10
Targeted cortical reorganization using optogenetics in non-human primates.
Elife. 2018 May 29;7:e31034. doi: 10.7554/eLife.31034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验