Yang Huifang, Guo Haoran, Pang Kanglei, Fan Peidong, Li Xinpan, Ren Wenlu, Song Rui
School of Chemical Sciences, University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing, 100049, PR China.
Nanoscale. 2020 Apr 3;12(13):7024-7034. doi: 10.1039/d0nr00001a.
Due to their features of low cost, good corrosion resistance and environmental friendliness, transition metal oxides/nitrides are among the most promising materials for energy storage and conversion. Meanwhile, graphitic carbon nitride is a non-metallic polymer that has been widely used in the environmental and energy conversion fields due to its abundant precursor species and simple process of synthesis. In this study, an amorphous carbon nitride/NiO/CoN-based composite (Ni-Co-CN) is in situ fabricated via simple one-step pyrolysis; it displays high capacitive performance and efficient electrocatalytic capability for the oxygen evolution reaction (OER). Specifically, the optimized Ni-Co-CN electrode shows an ultra-high areal specific capacitance of 18.8 F cm-2 at 2 mA cm-2 in 3 M KOH electrolyte, and it retains 91.4% of its areal specific capacitance even after 10 000 cycles of CV scans. Upon being used as an electrocatalyst in the OER process, the overpotential of Ni-Co-CN can reach 195 mV versus a reference hydrogen electrode (RHE) at 10 mA cm-2, which is far lower than those of most reported Ni/Co-based catalysts. Additionally, the potential loss of Ni-Co-CN electrode is less than 1% after a long-term durability test over 60 h. The experimental results integrated with density functional theoretical calculations reveal that the excellent performance of the Ni-Co-CN self-supported electrode can be ascribed to the fast redox reduction of multi-valent transition metal ions, abundant surface defects and plentiful nano-scaled porous structures. This work provides a promising strategy for exploring methods to combine economic Ni/Co-based compounds with carbon-based materials to obtain low-cost yet efficient electrode materials for electrochemical energy storage and conversion.
由于具有低成本、良好的耐腐蚀性和环境友好性等特点,过渡金属氧化物/氮化物是最有前途的储能和能量转换材料之一。同时,石墨相氮化碳是一种非金属聚合物,因其前驱体种类丰富且合成过程简单,已被广泛应用于环境和能量转换领域。在本研究中,通过简单的一步热解原位制备了一种非晶态氮化碳/NiO/CoN基复合材料(Ni-Co-CN);它对析氧反应(OER)表现出高电容性能和高效的电催化能力。具体而言,优化后的Ni-Co-CN电极在3 M KOH电解液中,2 mA cm-2时的超高面积比电容为18.8 F cm-2,即使经过10000次循环伏安扫描,其面积比电容仍保留91.4%。在OER过程中用作电催化剂时,Ni-Co-CN相对于参比氢电极(RHE)在10 mA cm-2时的过电位可达195 mV,远低于大多数已报道的Ni/Co基催化剂。此外,经过60 h的长期耐久性测试后,Ni-Co-CN电极的电位损失小于1%。结合密度泛函理论计算的实验结果表明,Ni-Co-CN自支撑电极的优异性能可归因于多价过渡金属离子的快速氧化还原、丰富的表面缺陷和大量的纳米级多孔结构。这项工作为探索将经济的Ni/Co基化合物与碳基材料相结合的方法提供了一个有前景的策略,以获得用于电化学储能和转换的低成本且高效的电极材料。