Suppr超能文献

基于卷积神经网络的草图增强驱动形状检索学习框架

Sketch Augmentation-Driven Shape Retrieval Learning Framework Based on Convolutional Neural Networks.

作者信息

Zhou Wen, Jia Jinyuan, Jiang Wenying, Huang Chenxi

出版信息

IEEE Trans Vis Comput Graph. 2021 Aug;27(8):3558-3570. doi: 10.1109/TVCG.2020.2975504. Epub 2021 Jun 30.

Abstract

In this article, we present a deep learning approach to sketch-based shape retrieval that incorporates a few novel techniques to improve the quality of the retrieval results. First, to address the problem of scarcity of training sketch data, we present a sketch augmentation method that more closely mimics human sketches compared to simple image transformation. Our method generates more sketches from the existing training data by (i) removing a stroke, (ii) adjusting a stroke, and (iii) rotating the sketch. As such, we generate a large number of sketch samples for training our neural network. Second, we obtain the 2D renderings of each 3D model in the shape database by determining the view positions that best depict the 3D shape: i.e., avoiding self-occlusion, showing the most salient features, and following how a human would normally sketch the model. We use a convolutional neural network (CNN) to learn the best viewing positions of each 3D model and generates their 2D images for the next step. Third, our method uses a cross-domain learning strategy based on two Siamese CNNs that pair up sketches and the 2D shape images. A joint Bayesian measure is used to measure the output similarity from these CNNs to maximize inter-class similarity and minimize intra-class similarity. Extensive experiments show that our proposed approach comprehensively outperforms many existing state-of-the-art methods.

摘要

在本文中,我们提出了一种基于草图的形状检索的深度学习方法,该方法结合了一些新颖的技术来提高检索结果的质量。首先,为了解决训练草图数据稀缺的问题,我们提出了一种草图增强方法,与简单的图像变换相比,该方法更接近人类草图。我们的方法通过以下方式从现有的训练数据中生成更多草图:(i)去除一条笔触,(ii)调整一条笔触,以及(iii)旋转草图。这样,我们生成了大量的草图样本用于训练我们的神经网络。其次,我们通过确定最能描绘3D形状的视图位置来获取形状数据库中每个3D模型的2D渲染图:即避免自遮挡、展示最显著的特征,并遵循人类通常绘制模型的方式。我们使用卷积神经网络(CNN)来学习每个3D模型的最佳视图位置,并为下一步生成它们的2D图像。第三,我们的方法基于两个连体CNN使用跨域学习策略,将草图和2D形状图像配对。使用联合贝叶斯度量来测量这些CNN的输出相似度,以最大化类间相似度并最小化类内相似度。大量实验表明,我们提出的方法全面优于许多现有的先进方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验