Suppr超能文献

用于减少肺结节检测中假阳性的全自动无结节分类的单视图 2D CNN。

Single-view 2D CNNs with fully automatic non-nodule categorization for false positive reduction in pulmonary nodule detection.

机构信息

School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Republic of Korea.

Department of Electrical Engineering, Hanbat National University, Republic of Korea.

出版信息

Comput Methods Programs Biomed. 2018 Oct;165:215-224. doi: 10.1016/j.cmpb.2018.08.012. Epub 2018 Aug 31.

Abstract

BACKGROUND AND OBJECTIVE

In pulmonary nodule detection, the first stage, candidate detection, aims to detect suspicious pulmonary nodules. However, detected candidates include many false positives and thus in the following stage, false positive reduction, such false positives are reliably reduced. Note that this task is challenging due to 1) the imbalance between the numbers of nodules and non-nodules and 2) the intra-class diversity of non-nodules. Although techniques using 3D convolutional neural networks (CNNs) have shown promising performance, they suffer from high computational complexity which hinders constructing deep networks. To efficiently address these problems, we propose a novel framework using the ensemble of 2D CNNs using single views, which outperforms existing 3D CNN-based methods.

METHODS

Our ensemble of 2D CNNs utilizes single-view 2D patches to improve both computational and memory efficiency compared to previous techniques exploiting 3D CNNs. We first categorize non-nodules on the basis of features encoded by an autoencoder. Then, all 2D CNNs are trained by using the same nodule samples, but with different types of non-nodules. By extending the learning capability, this training scheme resolves difficulties of extracting representative features from non-nodules with large appearance variations. Note that, instead of manual categorization requiring the heavy workload of radiologists, we propose to automatically categorize non-nodules based on the autoencoder and k-means clustering.

RESULTS

We performed extensive experiments to validate the effectiveness of our framework based on the database of the lung nodule analysis 2016 challenge. The superiority of our framework is demonstrated through comparing the performance of five frameworks trained with differently constructed training sets. Our proposed framework achieved state-of-the-art performance (0.922 of the competition performance metric score) with low computational demands (789K of parameters and 1024M of floating point operations per second).

CONCLUSION

We presented a novel false positive reduction framework, the ensemble of single-view 2D CNNs with fully automatic non-nodule categorization, for pulmonary nodule detection. Unlike previous 3D CNN-based frameworks, we utilized 2D CNNs using 2D single views to improve computational efficiency. Also, our training scheme using categorized non-nodules, extends the learning capability of representative features of different non-nodules. Our framework achieved state-of-the-art performance with low computational complexity.

摘要

背景与目的

在肺结节检测中,第一阶段即候选检测旨在检测可疑的肺结节。然而,所检测到的候选结节包含许多假阳性,因此在后续的假阳性减少阶段,需要可靠地减少这些假阳性。需要注意的是,由于 1)结节和非结节数量之间的不平衡,以及 2)非结节的类内多样性,这一任务具有挑战性。尽管使用三维卷积神经网络(3D CNN)的技术已显示出有前景的性能,但它们存在计算复杂度高的问题,这阻碍了构建深度网络。为了有效地解决这些问题,我们提出了一种新颖的框架,该框架使用基于单视图的二维卷积神经网络(2D CNN)的集合,其性能优于现有的基于 3D CNN 的方法。

方法

我们的二维卷积神经网络集合利用单视图 2D 补丁,与以前利用 3D CNN 的技术相比,提高了计算和内存效率。我们首先根据自动编码器编码的特征对非结节进行分类。然后,所有 2D CNN 都使用相同的结节样本进行训练,但使用不同类型的非结节。通过扩展学习能力,这种训练方案解决了从具有较大外观变化的非结节中提取代表性特征的困难。需要注意的是,与需要放射科医生大量工作的手动分类不同,我们建议基于自动编码器和 K 均值聚类自动对非结节进行分类。

结果

我们在肺结节分析 2016 挑战赛的数据库上进行了广泛的实验,验证了我们框架的有效性。通过比较基于不同构建的训练集进行训练的五个框架的性能,证明了我们框架的优越性。我们提出的框架以低计算需求(789K 参数和每秒 1024M 浮点运算)实现了最先进的性能(竞赛性能指标得分的 0.922)。

结论

我们提出了一种新的用于肺结节检测的假阳性减少框架,即基于单视图二维卷积神经网络的集合,并结合了全自动的非结节分类。与以前基于 3D CNN 的框架不同,我们使用二维单视图的二维卷积神经网络提高了计算效率。此外,我们使用分类非结节的训练方案扩展了不同非结节的代表性特征的学习能力。我们的框架以低计算复杂度实现了最先进的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验