Suppr超能文献

基于 NLPCA-SVR 的高层建筑物环境效应滤波。

Ambient Effect Filtering Using NLPCA-SVR in High-Rise Buildings.

机构信息

School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.

Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, China.

出版信息

Sensors (Basel). 2020 Feb 19;20(4):1143. doi: 10.3390/s20041143.

Abstract

The modal frequencies of a structure are affected by continuous changes in ambient factors, such as temperature, wind speed etc. This study incorporates nonlinear principal component analysis (NLPCA) with support vector regression (SVR) to build a mathematical model to reflect the correlation between ambient factors and modal frequencies. NLPCA is first used to eliminate the high correlation among different ambient factors and extract the nonlinear principal components. The extracted nonlinear principal components are input into the SVR model for training and predicting. The proposed method is verified by the measured data provided in the Guangzhou New TV Tower (GNTVT) Benchmark. The grid search method (GSM), genetic algorithm (GA) and fruit fly optimization algorithm (FOA) are applied to determine the optimal hyperparameters for the SVR model. The optimized result of FOA is most suitable for the NLPCA-SVR model. As evaluated by the hypothesis test and goodness-of-fit test, the results show that the proposed method has a high generalization performance and the correlation between the ambient factor and modal frequency can be strongly reflected. The proposed method can effectively eliminate the effects of ambient factors on modal frequencies.

摘要

结构的模态频率会受到环境因素(如温度、风速等)的持续变化的影响。本研究将非线性主成分分析(NLPCA)与支持向量回归(SVR)相结合,建立数学模型来反映环境因素与模态频率之间的相关性。首先,NLPCA 用于消除不同环境因素之间的高度相关性,并提取非线性主成分。提取的非线性主成分被输入到 SVR 模型中进行训练和预测。该方法通过广州新电视塔(GNTVT)基准提供的实测数据进行验证。网格搜索法(GSM)、遗传算法(GA)和果蝇优化算法(FOA)被应用于确定 SVR 模型的最优超参数。FOA 的优化结果最适合 NLPCA-SVR 模型。通过假设检验和拟合优度检验评估,结果表明,该方法具有较高的泛化性能,能够很好地反映环境因素与模态频率之间的相关性。该方法可以有效地消除环境因素对模态频率的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8d9/7070861/525e22013240/sensors-20-01143-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验