Suppr超能文献

致力于基因组稳定性:从 S 期到有丝分裂。

Working on Genomic Stability: From the S-Phase to Mitosis.

机构信息

Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain.

Institute of Human Genetics, CNRS, University of Montpellier, 34000 Montpellier, France.

出版信息

Genes (Basel). 2020 Feb 20;11(2):225. doi: 10.3390/genes11020225.

Abstract

Fidelity in chromosome duplication and segregation is indispensable for maintaining genomic stability and the perpetuation of life. Challenges to genome integrity jeopardize cell survival and are at the root of different types of pathologies, such as cancer. The following three main sources of genomic instability exist: DNA damage, replicative stress, and chromosome segregation defects. In response to these challenges, eukaryotic cells have evolved control mechanisms, also known as checkpoint systems, which sense under-replicated or damaged DNA and activate specialized DNA repair machineries. Cells make use of these checkpoints throughout interphase to shield genome integrity before mitosis. Later on, when the cells enter into mitosis, the spindle assembly checkpoint (SAC) is activated and remains active until the chromosomes are properly attached to the spindle apparatus to ensure an equal segregation among daughter cells. All of these processes are tightly interconnected and under strict regulation in the context of the cell division cycle. The chromosomal instability underlying cancer pathogenesis has recently emerged as a major source for understanding the mitotic processes that helps to safeguard genome integrity. Here, we review the special interconnection between the S-phase and mitosis in the presence of under-replicated DNA regions. Furthermore, we discuss what is known about the DNA damage response activated in mitosis that preserves chromosomal integrity.

摘要

染色体复制和分离的保真度对于维持基因组稳定性和生命的延续是必不可少的。基因组完整性受到挑战会危及细胞存活,并成为多种病理类型的根源,如癌症。基因组不稳定性存在以下三个主要来源:DNA 损伤、复制压力和染色体分离缺陷。为了应对这些挑战,真核细胞进化出了控制机制,也称为检查点系统,它可以感知未复制或受损的 DNA,并激活专门的 DNA 修复机制。细胞在有丝分裂前的间期利用这些检查点来保护基因组的完整性。之后,当细胞进入有丝分裂时,纺锤体组装检查点(SAC)被激活,并保持活跃状态,直到染色体正确地附着到纺锤体装置上,以确保子细胞的均等分离。所有这些过程在细胞分裂周期的背景下都是紧密相互关联和严格调控的。在存在未复制 DNA 区域的情况下,癌症发病机制中的染色体不稳定性最近已成为理解有助于保护基因组完整性的有丝分裂过程的主要来源。在这里,我们回顾了 S 期和有丝分裂之间在存在未复制 DNA 区域时的特殊联系。此外,我们还讨论了在有丝分裂中激活的 DNA 损伤反应,该反应可保持染色体的完整性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c43b/7074175/32ed19252feb/genes-11-00225-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验