Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105.
Department of Genome Sciences, University of Washington, Seattle, WA 98195.
Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5394-5401. doi: 10.1073/pnas.1915680117. Epub 2020 Feb 24.
As a prototype of genomics-guided precision medicine, individualized thiopurine dosing based on pharmacogenetics is a highly effective way to mitigate hematopoietic toxicity of this class of drugs. Recently, deficiency was identified as a genetic cause of thiopurine toxicity, and -informed preemptive dose reduction was quickly adopted in clinical settings. To exhaustively identify pharmacogenetic variants in this gene, we developed massively parallel NUDT15 function assays to determine the variants' effect on protein abundance and thiopurine cytotoxicity. Of the 3,097 possible missense variants, we characterized the abundance of 2,922 variants and found 54 hotspot residues at which variants resulted in complete loss of protein stability. Analyzing 2,935 variants in the thiopurine cytotoxicity-based assay, we identified 17 additional residues where variants altered NUDT15 activity without affecting protein stability. We identified structural elements key to NUDT15 stability and/or catalytical activity with single amino acid resolution. Functional effects for variants accurately predicted toxicity risk alleles in patients treated with thiopurines with far superior sensitivity and specificity compared to bioinformatic prediction algorithms. In conclusion, our massively parallel variant function assays identified 1,152 deleterious variants, providing a comprehensive reference of variant function and vastly improving the ability to implement pharmacogenetics-guided thiopurine treatment individualization.
作为基因组学指导的精准医学的一个原型,基于药物遗传学的个体化硫嘌呤剂量调整是减轻这类药物血液毒性的一种非常有效的方法。最近, 缺乏被确定为硫嘌呤毒性的遗传原因,基于 - 指导的抢先剂量减少很快在临床环境中被采用。为了详尽地识别该基因中的药物遗传学变异,我们开发了大规模平行 NUDT15 功能测定法,以确定变异对蛋白质丰度和硫嘌呤细胞毒性的影响。在 3097 个可能的错义变异中,我们对 2922 个变异的丰度进行了特征描述,并发现了 54 个热点残基,其中变异导致蛋白质稳定性完全丧失。在基于硫嘌呤细胞毒性的测定中分析了 2935 个变异,我们确定了另外 17 个残基,其中变异改变了 NUDT15 的活性而不影响蛋白质稳定性。我们确定了对 NUDT15 稳定性和/或催化活性具有单氨基酸分辨率的关键结构元件。变体的功能效应准确地预测了接受硫嘌呤治疗的患者中的毒性风险等位基因,与生物信息预测算法相比,具有更高的灵敏度和特异性。总之,我们的大规模平行变体功能测定法鉴定了 1152 个有害 变体,为变体功能提供了全面的参考,并极大地提高了实施基于药物遗传学的硫嘌呤治疗个体化的能力。