Suppr超能文献

通过电化学诱导相变对SrCoO中热输运进行双向调谐。

Bi-directional tuning of thermal transport in SrCoO with electrochemically induced phase transitions.

作者信息

Lu Qiyang, Huberman Samuel, Zhang Hantao, Song Qichen, Wang Jiayue, Vardar Gulin, Hunt Adrian, Waluyo Iradwikanari, Chen Gang, Yildiz Bilge

机构信息

Laboratory for Electrochemical Interfaces, Massachusetts Institute of Technology, Cambridge, MA, USA.

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nat Mater. 2020 Jun;19(6):655-662. doi: 10.1038/s41563-020-0612-0. Epub 2020 Feb 24.

Abstract

Unlike the wide-ranging dynamic control of electrical conductivity, there does not exist an analogous ability to tune thermal conductivity by means of electric potential. The traditional picture assumes that atoms inserted into a material's lattice act purely as a source of scattering for thermal carriers, which can only reduce thermal conductivity. In contrast, here we show that the electrochemical control of oxygen and proton concentration in an oxide provides a new ability to bi-directionally control thermal conductivity. On electrochemically oxygenating the brownmillerite SrCoO to the perovskite SrCoO, the thermal conductivity increases by a factor of 2.5, whereas protonating it to form hydrogenated SrCoO effectively reduces the thermal conductivity by a factor of four. This bi-directional tuning of thermal conductivity across a nearly 10 ± 4-fold range at room temperature is achieved by using ionic liquid gating to trigger the 'tri-state' phase transitions in a single device. We elucidated the effects of these anionic and cationic species, and the resultant changes in lattice constants and lattice symmetry on thermal conductivity by combining chemical and structural information from X-ray absorption spectroscopy with thermoreflectance thermal conductivity measurements and ab initio calculations. This ability to control multiple ion types, multiple phase transitions and electronic conductivity that spans metallic through to insulating behaviour in oxides by electrical means provides a new framework for tuning thermal transport over a wide range.

摘要

与电导率广泛的动态控制不同,不存在通过电势调节热导率的类似能力。传统观点认为,插入材料晶格中的原子纯粹作为热载流子的散射源,这只会降低热导率。相比之下,我们在此表明,氧化物中氧和质子浓度的电化学控制提供了一种双向控制热导率的新能力。将褐锰矿型SrCoO电化学氧化为钙钛矿型SrCoO时,热导率增加2.5倍,而将其质子化形成氢化SrCoO则有效地将热导率降低了四倍。通过使用离子液体门控在单个器件中触发“三态”相变,在室温下实现了热导率在近10±4倍范围内的双向调节。我们通过将X射线吸收光谱的化学和结构信息与热反射热导率测量及从头算相结合,阐明了这些阴离子和阳离子物种的影响,以及由此导致的晶格常数和晶格对称性变化对热导率的影响。这种通过电学手段控制多种离子类型、多个相变以及跨越从金属到绝缘行为的氧化物电子电导率的能力,为在宽范围内调节热传输提供了一个新框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验