Suppr超能文献

经肾活检确诊的糖尿病肾病患者终末期肾病风险预测模型的开发与验证

Development and validation of a predictive model for end-stage renal disease risk in patients with diabetic nephropathy confirmed by renal biopsy.

作者信息

Sun Lulu, Shang Jin, Xiao Jing, Zhao Zhanzheng

机构信息

Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan province, China.

出版信息

PeerJ. 2020 Feb 11;8:e8499. doi: 10.7717/peerj.8499. eCollection 2020.

Abstract

This study was performed to develop and validate a predictive model for the risk of end-stage renal disease (ESRD) inpatients with diabetic nephropathy (DN) confirmed by renal biopsy. We conducted a retrospective study with 968 patients with T2DM who underwentrenal biopsy for the pathological confirmation of DNat the First Affiliated Hospital of Zhengzhou University from February 2012 to January 2015; the patients were followed until December 2018. The outcome was defined as a fatal or nonfatal ESRD event (peritoneal dialysis or hemodialysis for ESRD, renal transplantation, or death due to chronic renal failure or ESRD). The dataset was randomly split into development (75%) and validation (25%) cohorts. We used stepwise multivariablelogistic regression to identify baseline predictors for model development. The model's performance in the two cohorts, including discrimination and calibration, was evaluated by the C-statistic and the value of the Hosmer-Lemeshow test. During the 3-year follow-up period, there were 225 outcome events (47.1%) during follow-up. Outcomes occurred in 187 patients (52.2%) in the derivation cohort and 38 patients (31.7%) in the validation cohort. The variables selected in the final multivariable logistic regression after backward selection were pathological grade, Log Urinary Albumin-to-creatinine ratio (Log ACR), cystatin C, estimated glomerular filtration rate (eGFR) and B-type natriuretic peptide (BNP). 4 prediction models were created in a derivation cohort of 478 patients: a clinical model that included cystatin C, eGFR, BNP, Log ACR; a clinical-pathological model and a clinical-medication model, respectively, also contained pathological grade and renin-angiotensin system blocker (RASB) use; and a full model that also contained the pathological grade, RASB use and age. Compared with the clinical model, the clinical-pathological model and the full model had better C statistics (0.865 and 0.866, respectively, vs. 0.864) in the derivation cohort and better C statistics (0.876 and 0.875, respectively, vs. 0.870) in the validation cohort. Among the four models, the clinical-pathological model had the lowest AIC of 332.53 and the best value of 0.909 of the Hosmer-Lemeshow test. We constructed a nomogram which was a simple calculator to predict the risk ratio of progression to ESRD for patients with DN within 3 years. The clinical-pathological model using routinely available clinical measurements was shown to be accurate and validated method for predicting disease progression in patients with DN. The risk model can be used in clinical practice to improve the quality of risk management and early intervention.

摘要

本研究旨在开发并验证一种预测模型,用于评估经肾活检确诊为糖尿病肾病(DN)的住院患者发生终末期肾病(ESRD)的风险。我们进行了一项回顾性研究,纳入了968例2型糖尿病(T2DM)患者,这些患者于2012年2月至2015年1月在郑州大学第一附属医院接受肾活检以进行DN的病理确诊;对患者进行随访直至2018年12月。结局定义为致命或非致命的ESRD事件(ESRD的腹膜透析或血液透析、肾移植,或因慢性肾衰竭或ESRD死亡)。数据集被随机分为开发队列(75%)和验证队列(25%)。我们使用逐步多变量逻辑回归来确定模型开发的基线预测因素。通过C统计量和Hosmer-Lemeshow检验的P值评估模型在两个队列中的表现,包括区分度和校准度。在3年随访期内,随访期间有225例结局事件(47.1%)。在推导队列中有187例患者(52.2%)发生结局,在验证队列中有38例患者(31.7%)发生结局。在向后选择后最终多变量逻辑回归中选择的变量为病理分级、尿白蛋白肌酐比值对数(Log ACR)、胱抑素C、估计肾小球滤过率(eGFR)和B型利钠肽(BNP)。在478例患者的推导队列中创建了4个预测模型:一个临床模型,包括胱抑素C、eGFR、BNP、Log ACR;一个临床病理模型和一个临床用药模型,分别还包含病理分级和肾素-血管紧张素系统阻滞剂(RASB)的使用情况;以及一个完整模型,还包含病理分级、RASB使用情况和年龄。与临床模型相比,临床病理模型和完整模型在推导队列中的C统计量更好(分别为0.865和0.866,而临床模型为0.864),在验证队列中的C统计量也更好(分别为0.876和0.875,而临床模型为0.870)。在这四个模型中,临床病理模型的AIC最低,为332.53,Hosmer-Lemeshow检验的最佳P值为0.909。我们构建了一个列线图,它是一个简单的计算器,用于预测DN患者在3年内进展为ESRD的风险比。使用常规可用临床测量的临床病理模型被证明是预测DN患者疾病进展的准确且经过验证的方法。该风险模型可用于临床实践,以提高风险管理和早期干预的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5989/7020820/f65c94f45806/peerj-08-8499-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验