Suppr超能文献

开发和验证 2 型糖尿病和慢性肾脏病患者未来估算肾小球滤过率的预测模型。

Development and Validation of a Prediction Model for Future Estimated Glomerular Filtration Rate in People With Type 2 Diabetes and Chronic Kidney Disease.

机构信息

Center for Medical Data Science, Section for Clinical Biometrics, Medical University of Vienna, Vienna, Austria.

Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.

出版信息

JAMA Netw Open. 2023 Apr 3;6(4):e231870. doi: 10.1001/jamanetworkopen.2023.1870.

Abstract

IMPORTANCE

Type 2 diabetes increases the risk of progressive diabetic kidney disease, but reliable prediction tools that can be used in clinical practice and aid in patients' understanding of disease progression are currently lacking.

OBJECTIVE

To develop and externally validate a model to predict future trajectories in estimated glomerular filtration rate (eGFR) in adults with type 2 diabetes and chronic kidney disease using data from 3 European multinational cohorts.

DESIGN, SETTING, AND PARTICIPANTS: This prognostic study used baseline and follow-up information collected between February 2010 and December 2019 from 3 prospective multinational cohort studies: PROVALID (Prospective Cohort Study in Patients with Type 2 Diabetes Mellitus for Validation of Biomarkers), GCKD (German Chronic Kidney Disease), and DIACORE (Diabetes Cohorte). A total of 4637 adult participants (aged 18-75 years) with type 2 diabetes and mildly to moderately impaired kidney function (baseline eGFR of ≥30 mL/min/1.73 m2) were included. Data were analyzed between June 30, 2021, and January 31, 2023.

MAIN OUTCOMES AND MEASURES

Thirteen variables readily available from routine clinical care visits (age, sex, body mass index; smoking status; hemoglobin A1c [mmol/mol and percentage]; hemoglobin, and serum cholesterol levels; mean arterial pressure, urinary albumin-creatinine ratio, and intake of glucose-lowering, blood-pressure lowering, or lipid-lowering medication) were selected as predictors. Repeated eGFR measurements at baseline and follow-up visits were used as the outcome. A linear mixed-effects model for repeated eGFR measurements at study entry up to the last recorded follow-up visit (up to 5 years after baseline) was fit and externally validated.

RESULTS

Among 4637 adults with type 2 diabetes and chronic kidney disease (mean [SD] age at baseline, 63.5 [9.1] years; 2680 men [57.8%]; all of White race), 3323 participants from the PROVALID and GCKD studies (mean [SD] age at baseline, 63.2 [9.3] years; 1864 men [56.1%]) were included in the model development cohort, and 1314 participants from the DIACORE study (mean [SD] age at baseline, 64.5 [8.3] years; 816 men [62.1%]) were included in the external validation cohort, with a mean (SD) follow-up of 5.0 (0.6) years. Updating the random coefficient estimates with baseline eGFR values yielded improved predictive performance, which was particularly evident in the visual inspection of the calibration curve (calibration slope at 5 years: 1.09; 95% CI, 1.04-1.15). The prediction model had good discrimination in the validation cohort, with the lowest C statistic at 5 years after baseline (0.79; 95% CI, 0.77-0.80). The model also had predictive accuracy, with an R2 ranging from 0.70 (95% CI, 0.63-0.76) at year 1 to 0.58 (95% CI, 0.53-0.63) at year 5.

CONCLUSIONS AND RELEVANCE

In this prognostic study, a reliable prediction model was developed and externally validated; the robust model was well calibrated and capable of predicting kidney function decline up to 5 years after baseline. The results and prediction model are publicly available in an accompanying web-based application, which may open the way for improved prediction of individual eGFR trajectories and disease progression.

摘要

重要性:2 型糖尿病会增加进展性糖尿病肾病的风险,但目前缺乏可在临床实践中使用并帮助患者了解疾病进展的可靠预测工具。

目的:利用来自 3 个欧洲多国队列的资料,开发并外部验证一种用于预测 2 型糖尿病合并慢性肾脏病患者肾小球滤过率(eGFR)未来轨迹的模型。

设计、设置和参与者:本预后研究使用了 2010 年 2 月至 2019 年 12 月期间从 3 个前瞻性多国队列研究(PROVALID[2 型糖尿病患者的前瞻性队列研究,用于验证生物标志物]、GCKD[德国慢性肾脏病]和 DIACORE[糖尿病队列])中收集的基线和随访信息。共纳入 4637 名年龄在 18-75 岁之间、患有 2 型糖尿病且肾功能轻度至中度受损(基线 eGFR≥30 mL/min/1.73 m2)的成年参与者。数据分析于 2021 年 6 月 30 日至 2023 年 1 月 31 日进行。

主要结局和测量:选择了 13 个变量作为预测因子,这些变量易于从常规临床就诊中获得(年龄、性别、体重指数;吸烟状况;糖化血红蛋白[mmol/mol 和百分比];血红蛋白和血清胆固醇水平;平均动脉压、尿白蛋白/肌酐比值以及使用降血糖、降压或降脂药物的情况)。将基线和随访时的重复 eGFR 测量作为结局。拟合了研究入组时重复 eGFR 测量的线性混合效应模型,直至最后一次记录的随访(基线后 5 年),并进行了外部验证。

结果:在 4637 名患有 2 型糖尿病和慢性肾脏病的成年人中(基线时平均[标准差]年龄为 63.5[9.1]岁,2680 名男性[57.8%],均为白种人),来自 PROVALID 和 GCKD 研究的 3323 名参与者(基线时平均[标准差]年龄为 63.2[9.3]岁,1864 名男性[56.1%])被纳入模型开发队列,来自 DIACORE 研究的 1314 名参与者(基线时平均[标准差]年龄为 64.5[8.3]岁,816 名男性[62.1%])被纳入外部验证队列,平均(标准差)随访时间为 5.0(0.6)年。用基线 eGFR 值更新随机系数估计值可提高预测性能,在校准曲线的直观检查中尤其明显(5 年时的校准斜率:1.09;95%CI,1.04-1.15)。该预测模型在验证队列中具有良好的区分度,在基线后 5 年时的最低 C 统计量最低(0.79;95%CI,0.77-0.80)。该模型也具有预测准确性,R2 范围从第 1 年的 0.70(95%CI,0.63-0.76)到第 5 年的 0.58(95%CI,0.53-0.63)。

结论和相关性:在这项预后研究中,开发并外部验证了一种可靠的预测模型;该稳健的模型具有良好的校准能力,能够预测基线后 5 年内的肾功能下降情况。研究结果和预测模型可在一个配套的网络应用程序中获得,这可能为改善个体 eGFR 轨迹和疾病进展的预测铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2aec/10077108/8e362f62e279/jamanetwopen-e231870-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验