Suppr超能文献

基于金属有机框架的先进电催化剂

Advanced Electrocatalysts Based on Metal-Organic Frameworks.

作者信息

Zheng Fuqin, Zhang Ziwei, Zhang Chunmei, Chen Wei

机构信息

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.

University of Chinese Academy of Sciences, Beijing 100049, PR China.

出版信息

ACS Omega. 2019 Dec 30;5(6):2495-2502. doi: 10.1021/acsomega.9b03295. eCollection 2020 Feb 18.

Abstract

In recent years, metal-organic frameworks (MOFs) have been wildly studied as heterogeneous catalysts due to their diversity of structures and outstanding physical and chemical properties. Meanwhile, MOFs have also been regarded as promising templates for the synthesis of conductive and electrochemically active catalysts. However, in most of the studies, high-temperature annealing is needed to transform nonconductive or low-conductive MOFs to conductive materials for electrocatalyis, during which the unique structures and intrinsic active sites in MOFs can be easily destroyed. Therefore, in recent years, different strategies have been developed for improving the catalytic performances of MOF-based composites for electrochemical reactions with no need of post-treatment. This mini-review highlights the recent advances on MOF-based structures with improved conductivities and electrochemical activities for the application in electrocatalysis. Overall, the advanced MOF-based electrocatalysts include the highly conductive and electrochemically active pristine MOFs, MOFs combined with conductive substrates, and MOFs hybridized with active materials. Finally, we propose the direction for future works on MOF-based electrocatalysts.

摘要

近年来,金属有机框架材料(MOFs)因其结构的多样性以及出色的物理和化学性质而被广泛研究用作多相催化剂。同时,MOFs也被视为合成导电和电化学活性催化剂的有前景的模板。然而,在大多数研究中,需要高温退火将非导电或低导电的MOFs转化为用于电催化的导电材料,在此过程中MOFs中独特的结构和固有活性位点很容易被破坏。因此,近年来,已开发出不同的策略来提高基于MOF的复合材料在电化学反应中的催化性能,而无需后处理。本综述重点介绍了基于MOF的结构在提高电导率和电化学活性以应用于电催化方面的最新进展。总体而言,先进的基于MOF的电催化剂包括高导电和电化学活性的原始MOFs、与导电基底结合的MOFs以及与活性材料杂化的MOFs。最后,我们提出了基于MOF的电催化剂未来的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38a7/7033666/09c30c63c41b/ao9b03295_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验