Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany.
Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118, Kiel, Germany.
Angew Chem Int Ed Engl. 2020 May 25;59(22):8401-8405. doi: 10.1002/anie.201914888. Epub 2020 Mar 20.
Carbohydrates are ubiquitous biomolecules in nature. The vast majority of their biomolecular activity takes place in aqueous environments. Molecular reactivity and functionality are, therefore, often strongly influenced by not only interactions with equivalent counterparts, but also with the surrounding water molecules. Glycoaldehyde (Gly) represents a prototypical system to identify the relevant interactions and the balance that governs them. Here we present a broadband rotational-spectroscopy study on the stepwise hydration of the Gly dimer with up to three water molecules. We reveal the preferred hydrogen-bond networks formed when water molecules sequentially bond to the sugar dimer. We observe that the dimer structure and the hydrogen-bond networks at play remarkably change upon the addition of just a single water molecule to the dimer. Further addition of water molecules does not significantly alter the observed hydrogen-bond topologies.
碳水化合物在自然界中无处不在。它们绝大多数的生物分子活性都发生在水相环境中。因此,分子的反应性和功能不仅受到与同等物质相互作用的影响,还受到周围水分子的影响。甘油醛(Gly)代表了一个典型的系统,可以识别相关的相互作用及其平衡。在这里,我们对 Gly 二聚体与多达三个水分子的逐步水合进行了宽带旋转光谱研究。我们揭示了当水分子依次与糖二聚体结合时形成的优先氢键网络。我们观察到,当向二聚体中仅添加一个水分子时,二聚体结构和起作用的氢键网络会发生显著变化。进一步添加水分子不会显著改变观察到的氢键拓扑结构。