Hou Chuanxin, Wang Jun, Zhang Weibin, Li Jiajia, Zhang Runhao, Zhou Junjie, Fan Yuqi, Li Dajian, Dang Feng, Liu Jiaqing, Li Yong, Liang Kang, Kong Biao
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, P. R. China.
Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China.
ACS Appl Mater Interfaces. 2020 Mar 25;12(12):13770-13780. doi: 10.1021/acsami.9b20317. Epub 2020 Feb 25.
Despite the excellent electrochemical performance of MnO-based electrodes, a large capacity increase cannot be avoided during long-life cycling, which makes it difficult to seek out appropriate cathode materials to match for commercial applications. In this work, a grape-like MnO-Ni@C framework from interfacial superassembly with remarkable electrochemical properties was fabricated as anode materials for lithium-ion batteries. Electrochemical analysis indicates that the introduction of Ni not only contributes to the excellent rate capability and high specific capacity but also prevents further oxidation of MnO to the higher valence states for ultrastable long-life cycling performance. Furthermore, thermodynamic calculation proves that the ultrastable long cycling life of the Ni-Mn-O system originated from a buffer composition region to stabilize the MnO structure. Because of the unique grape-like structure and performance of the Ni-Mn-O system, the MnO-Ni@C electrode displayed an invertible specific capacity of 706 mA h g after 200 cycles at a current density of 0.1 A g and excellent cycling stability maintained a capacity of 476.8 mA h g after 2100 cycles at 1.0 A g without obvious capacity change. This new nanocomposite material could offer a novel fabrication strategy and insight for MnO-based materials and other metal oxides as anodes for improved electrochemical performance.
尽管MnO基电极具有优异的电化学性能,但在长寿命循环过程中仍不可避免地会出现大容量增加的情况,这使得寻找适合商业应用的匹配阴极材料变得困难。在这项工作中,通过界面超组装制备了一种具有卓越电化学性能的葡萄状MnO-Ni@C框架作为锂离子电池的负极材料。电化学分析表明,Ni的引入不仅有助于实现优异的倍率性能和高比容量,还能防止MnO进一步氧化为更高价态,从而实现超稳定的长寿命循环性能。此外,热力学计算证明,Ni-Mn-O体系的超长循环寿命源于一个缓冲成分区域,以稳定MnO结构。由于Ni-Mn-O体系独特的葡萄状结构和性能,MnO-Ni@C电极在0.1 A g的电流密度下循环200次后,可逆比容量为706 mA h g,在1.0 A g的电流密度下循环2100次后,保持了476.8 mA h g的容量且无明显容量变化,具有优异的循环稳定性。这种新型纳米复合材料可为MnO基材料和其他金属氧化物作为负极改善电化学性能提供一种新颖的制备策略和见解。