Kshirsagar Aseem Rajan, D'Avino Gabriele, Blase Xavier, Li Jing, Poloni Roberta
Grenoble-INP, SIMaP, University of Grenoble-Alpes, CNRS, F-38042 Grenoble, France.
Institut Néel-CNRS and Université Grenoble-Alpes, F-38042 Grenoble, France.
J Chem Theory Comput. 2020 Apr 14;16(4):2021-2027. doi: 10.1021/acs.jctc.9b01257. Epub 2020 Mar 4.
By employing the Bethe-Salpeter formalism coupled with a nonequilibrium embedding scheme, we demonstrate that the paradigmatic case of S band separation between and in azobenzene derivatives can be computed with excellent accuracy compared to experimental optical spectra. Besides embedding, we show that the choice of the Kohn-Sham exchange correlation functional for DFT is critical, despite the iterative convergence of quasiparticle energies. We address this by adopting an orbital-tuning approach via the global hybrid functional, PBEh, yielding an environment-consistent ionization potential. The vertical excitation energy of 20 azo molecules is predicted with a mean absolute error as low as 0.06 eV, up to three times smaller compared to standard functionals such as M06-2X and PBE0, and five times smaller compared to recent TDDFT results.
通过采用与非平衡嵌入方案相结合的贝特-萨尔皮特形式体系,我们证明,与实验光谱相比,偶氮苯衍生物中S带分离的典型情况可以以极高的精度进行计算。除了嵌入之外,我们还表明,尽管准粒子能量具有迭代收敛性,但密度泛函理论(DFT)中Kohn-Sham交换关联泛函的选择至关重要。我们通过采用经由全局杂化泛函PBEh的轨道调谐方法来解决这一问题,从而产生与环境一致的电离势。预测了20个偶氮分子的垂直激发能,平均绝对误差低至0.06 eV,与诸如M06-2X和PBE0等标准泛函相比小达三倍,与最近的含时密度泛函理论(TDDFT)结果相比小达五倍。