Institut Néel, CNRS and Université Joseph Fourier, B.P. 166, 38042 Grenoble Cedex 09, France.
J Chem Phys. 2013 Nov 21;139(19):194308. doi: 10.1063/1.4830236.
We study within the many-body Green's function GW and Bethe-Salpeter formalisms the excitation energies of a paradigmatic model dipeptide, focusing on the four lowest-lying local and charge-transfer excitations. Our GW calculations are performed at the self-consistent level, updating first the quasiparticle energies, and further the single-particle wavefunctions within the static Coulomb-hole plus screened-exchange approximation to the GW self-energy operator. Important level crossings, as compared to the starting Kohn-Sham LDA spectrum, are identified. Our final Bethe-Salpeter singlet excitation energies are found to agree, within 0.07 eV, with CASPT2 reference data, except for one charge-transfer state where the discrepancy can be as large as 0.5 eV. Our results agree best with LC-BLYP and CAM-B3LYP calculations with enhanced long-range exchange, with a 0.1 eV mean absolute error. This has been achieved employing a parameter-free formalism applicable to metallic or insulating extended or finite systems.
我们在多体格林函数 GW 和贝蒂-萨尔皮特(Bethe-Salpeter)形式主义中研究了一个典范模型二肽的激发能,重点关注四个最低的局域和电荷转移激发。我们的 GW 计算是在自洽水平上进行的,首先更新准粒子能,然后在静态库仑空洞加上 screened-exchange 近似的 GW 自能算子内进一步更新单粒子波函数。与初始 Kohn-Sham LDA 谱相比,我们确定了重要的能级交叉点。我们的最终贝蒂-萨尔皮特单重态激发能与 CASPT2 参考数据在 0.07 eV 内一致,除了一个电荷转移态,其差异可以高达 0.5 eV。我们的结果与具有增强长程交换的 LC-BLYP 和 CAM-B3LYP 计算最一致,平均绝对误差为 0.1 eV。这是通过使用适用于金属或绝缘扩展或有限系统的无参数形式主义实现的。