Rauch Tomáš, Marques Miguel A L, Botti Silvana
Institut für Festkörpertheorie und optik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany.
Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle/Saale, Germany.
J Chem Theory Comput. 2020 Apr 14;16(4):2654-2660. doi: 10.1021/acs.jctc.9b01147. Epub 2020 Mar 16.
The modified Becke-Johnson meta-GGA potential of density functional theory has been shown to be the best exchange-correlation potential to determine band gaps of crystalline solids. However, it cannot be consistently used for the electronic structure of nonperiodic or nanostructured systems. We propose an extension of this potential that enables its use to study heterogeneous, finite, and low-dimensional systems. This is achieved by using a coordinate-dependent expression for the parameter that weights the Becke-Russel exchange, in contrast to the original global formulation, where is just a fitted number. Our potential takes advantage of the excellent description of band gaps provided by the modified Becke-Johnson potential and preserves its modest computational effort. Furthermore, it yields with one single calculation band diagrams and band offsets of heterostructures and surfaces. We exemplify the usefulness and efficiency of our local meta-GGA potential by testing it for a series of interfaces (Si/SiO, AlAs/GaAs, AlP/GaP, and GaP/Si), a Si surface, and boron nitride monolayer.
密度泛函理论中的修正Becke-Johnson元广义梯度近似(meta-GGA)势已被证明是确定晶体固体带隙的最佳交换关联势。然而,它不能始终如一地用于非周期性或纳米结构系统的电子结构。我们提出了这种势的一种扩展,使其能够用于研究异质、有限和低维系统。这是通过对加权Becke-Russel交换的参数使用坐标相关表达式来实现的,这与原始的全局公式不同,在原始公式中该参数只是一个拟合数。我们的势利用了修正Becke-Johnson势对带隙的出色描述,并保持了其适度的计算量。此外,它通过一次计算就能得出异质结构和表面的能带图和带偏移。我们通过对一系列界面(Si/SiO、AlAs/GaAs、AlP/GaP和GaP/Si)、一个Si表面和氮化硼单层进行测试,例证了我们的局域元GGA势的实用性和效率。