Institut für Festkörpertheorie und -optik , Friedrich-Schiller-Universität Jena and European Theoretical Spectroscopy Facility , Max-Wien-Platz 1 , 07743 Jena , Germany.
Institut für Physik , Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle , Germany.
J Chem Theory Comput. 2019 Sep 10;15(9):5069-5079. doi: 10.1021/acs.jctc.9b00322. Epub 2019 Aug 11.
We compile a large data set designed for the efficient benchmarking of exchange-correlation functionals for the calculation of electronic band gaps. The data set comprises information on the experimental structure and band gap of 472 nonmagnetic materials and includes a diverse group of covalent-, ionic-, and van der Waals-bonded solids. We used it to benchmark 12 functionals, ranging from standard local and semilocal functionals, passing through meta-generalized-gradient approximations, and several hybrids. We included both general purpose functionals, like the Perdew-Burke-Ernzerhof approximation, and functionals specifically crafted for the determination of band gaps. The comparison of experimental and theoretical band gaps shows that the modified Becke-Johnson is at the moment the best available density functional, closely followed by the Heyd-Scuseria-Ernzerhof screened hybrid from 2006 and the high-local-exchange generalized-gradient approximation.
我们编译了一个大型数据集,旨在对用于计算电子能带隙的交换相关泛函进行高效基准测试。该数据集包含 472 种非磁性材料的实验结构和能带隙信息,包括共价、离子和范德华键合固体的多种组合。我们使用它对 12 种泛函进行了基准测试,这些泛函从标准的局域和半局域泛函,经过广义梯度近似,到几种杂化泛函都有涉及。我们包括了通用泛函,如 Perdew-Burke-Ernzerhof 近似,以及专门用于确定能带隙的泛函。实验和理论能带隙的比较表明,目前修改后的 Becke-Johnson 泛函是最好的可用密度泛函,紧随其后的是 2006 年的 Heyd-Scuseria-Ernzerhof 屏蔽杂化泛函和高局域交换广义梯度近似。