Suppr超能文献

开发人工神经网络模型,模拟包含微量元素影响的小球藻生长。

Development of an artificial neural network model to simulate the growth of microalga Chlorella vulgaris incorporating the effect of micronutrients.

机构信息

Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka.

Department of Mechanical Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka.

出版信息

J Biotechnol. 2020 Mar 20;312:44-55. doi: 10.1016/j.jbiotec.2020.02.010. Epub 2020 Feb 22.

Abstract

Artificial neural network (ANN) models can be trained to simulate the dynamic behavior of biological systems. In the present study, an ANN model was developed upon multilayer perceptron neural network architecture with 23-20-1 configuration to predict the cell concentration of microalga Chlorella vulgaris at a given time. Irradiance level, photoperiod, temperature, air flow rate, CO percentage of the air stream, initial cell concentration, cultivation time and the nutrient concentrations of the media were considered as the input variables of the model. Resilient backpropagation learning algorithm was used to train the model by means of 484 experimental data belonging to four studies. Bias and accuracy factors of the developed model fall into the range of 0.95-1.11 indicating the model has an excellent prediction ability. Parity plot showed a good agreement between the predicted and experimental values with R = 0.98. Relative importance of the inputs was evaluated using Garson's algorithm. The results of the study indicated that CO supply had the highest impact on the growth of C. vulgaris within the selected range of input parameters. Among macronutrients and micronutrients, highest influence was demonstrated by nitrogen and copper respectively.

摘要

人工神经网络 (ANN) 模型可以被训练来模拟生物系统的动态行为。在本研究中,开发了一种具有 23-20-1 配置的多层感知器神经网络架构的 ANN 模型,用于预测在给定时间下微藻普通小球藻的细胞浓度。辐照度水平、光周期、温度、气流率、气流中的 CO 百分比、初始细胞浓度、培养时间和培养基的营养浓度被视为模型的输入变量。弹性反向传播学习算法通过属于四项研究的 484 个实验数据来训练模型。开发模型的偏差和精度因子在 0.95-1.11 范围内,表明模型具有出色的预测能力。奇偶校验图显示预测值与实验值具有很好的一致性,R=0.98。使用 Garson 算法评估输入的相对重要性。研究结果表明,在所选择的输入参数范围内,CO 供应对 C. vulgaris 的生长具有最高的影响。在大量营养素和微量元素中,氮和铜分别表现出最高的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验