Suppr超能文献

基于人工神经网络-多目标遗传算法的优化,用于增强集胞藻PCC 6803中的色素积累。

Artificial Neural Network - Multi-Objective Genetic Algorithm based optimization for the enhanced pigment accumulation in Synechocystis sp. PCC 6803.

作者信息

Bhagat Namrata, Gupta Guddu Kumar, Minhas Amritpreet Kaur, Chhabra Deepak, Shukla Pratyoosh

机构信息

Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.

TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi, India.

出版信息

BMC Biotechnol. 2025 Mar 15;25(1):23. doi: 10.1186/s12896-025-00955-9.

Abstract

BACKGROUND

Natural colorants produced by the cyanobacterium include carotenoids, chlorophyll a and phycocyanin. The current study used the Synechocystis sp. PCC 6803 to examine how abiotic stress conditions, such as low temperature as well as high light intensity, affect the pigment accumulations in comparison to the control conditions. Additionally, using the response surface methodology (RSM) and artificial neural network - multi-objective genetic algorithm (ANN-MOGA), the impact of several nitrogen sources such as urea, ammonium chloride, and sodium nitrate as nutritional stress on the pigment accumulations in the Synechocystis sp. PCC 6803 was examined.

RESULTS

The results showed that the pigment accumulation was more pronounced when urea and ammonium chloride was used in combination with nitrate, respectively, as nitrogen source. With the help of our prediction model that used ANN-MOGA, we were able to enhance the synthesis of chlorophyll a, carotenoids, and phycocyanin by 21.93 µg/mL, 9.78 µg/mL, and 0.05 µg/mL, respectively compared to control with 6.37, 3.88 and 0.008 µg/mL. The significant scavenging activity of pigment was showed with 7.66 ± 0.001 values of IC50. Additionally, a very good correlation of coefficient (R) value 0.99, 0.99 and 0.92 was obtained for APX, CAT and GPX enzyme activity, respectively.

CONCLUSIONS

The findings lays the groundwork for future attempts to turn cyanobacteria into a commercially viable source of natural pigments by demonstrating the benefits of using the RSM and machine learning techniques like ANN-MOGA to optimise the production of cyanobacterial pigments. The significant scavenging and antioxidant activities like CAT, GPX and APX were also shown by the pigments of the Synechocystis sp. PCC 6803. Furthermore, these machine learning tools can be used as a model to improve and optimize the yields for other metabolites production.

摘要

背景

蓝藻产生的天然色素包括类胡萝卜素、叶绿素a和藻蓝蛋白。本研究使用聚球藻属PCC 6803来研究非生物胁迫条件,如低温和高光强度,与对照条件相比如何影响色素积累。此外,使用响应面法(RSM)和人工神经网络 - 多目标遗传算法(ANN-MOGA),研究了尿素、氯化铵和硝酸钠等几种氮源作为营养胁迫对聚球藻属PCC 6803色素积累的影响。

结果

结果表明,当分别将尿素和氯化铵与硝酸盐组合用作氮源时,色素积累更为明显。借助我们使用ANN-MOGA的预测模型,与对照(分别为6.37、3.88和0.008 μg/mL)相比,我们能够分别将叶绿素a、类胡萝卜素和藻蓝蛋白的合成提高21.93 μg/mL、9.78 μg/mL和0.05 μg/mL。色素显示出显著的清除活性,IC50值为7.66±0.001。此外,APX、CAT和GPX酶活性分别获得了非常好的相关系数(R)值0.99、0.99和0.92。

结论

这些发现为未来将蓝藻转变为商业上可行的天然色素来源的尝试奠定了基础,通过证明使用RSM和ANN-MOGA等机器学习技术优化蓝藻色素生产的益处。聚球藻属PCC 6803的色素还显示出显著的清除和抗氧化活性,如CAT、GPX和APX。此外,这些机器学习工具可作为模型来提高和优化其他代谢产物的产量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc38/11910872/5ef78e956ab2/12896_2025_955_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验