Dept. Chemistry, Division for Pure and Applied Biochemistry, Lund University, Sweden.
Dept. Chemistry, Division for Pure and Applied Biochemistry, Lund University, Sweden.
Ultrason Sonochem. 2020 Jun;64:105011. doi: 10.1016/j.ultsonch.2020.105011. Epub 2020 Feb 7.
We have developed an in-situ method using sonication (3 mm probe sonicator, 30 W, 20 kHz) and auto-reduction (control) to study the mechanism of the formation of manganese dioxide (MnO) on a solid template (silk film), and its resulting enzymatic activity on tetramethylbenzidine (TMB) substrate. The fabrication of the silk film was first optimized for stability (no degradation) and optical transparency. A factorial approach was used to assess the effect of sonication time and the initial concentration of potassium permanganate (KMnO). The result indicated a significant correlation with a fraction of KMnO consumed and MnO formation. Further, we found that the optimal process conditions to obtain a stable silk film with highly catalytic MnO nanoparticles (NPs) was 30 min of sonication in the presence of 0.5 mM of KMnO at a temperature of 20-24 °C. Under the optimal condition, we monitored in-situ the formation of MnO on the silk film, and after thorough rinsing, the in-situ catalysis of 0.8 mM of TMB substrate. For control, we used the auto-reduction of KMnO onto the silk film after about 16 h. The result from single-wavelength analysis confirmed the different kinetics rates for the formation of MnO via sonication and auto-reduction. The result from the multivariate component analysis indicated a three components route for sonication and auto-reduction to form MnO-Silk. Overall, we found that the smaller size, more mono-dispersed, and deeper buried MnO NPs in silk film prepared by sonication, conferred a higher catalytic activity and stability to the hybrid material.
我们开发了一种原位方法,使用超声处理(3mm 探头超声仪,30W,20kHz)和自动还原(对照)来研究二氧化锰(MnO)在固体模板(丝膜)上形成的机制,以及其对四甲基联苯胺(TMB)底物的酶活性。首先优化了丝膜的稳定性(无降解)和光学透明度。采用析因法评估了超声时间和高锰酸钾(KMnO4)初始浓度的影响。结果表明,MnO 的消耗分数和形成分数与超声时间和 KMnO4 的初始浓度有显著相关性。此外,我们发现,获得具有高催化 MnO 纳米粒子(NPs)的稳定丝膜的最佳工艺条件是在 20-24°C 温度下,用 0.5mM 的 KMnO4 进行 30 分钟的超声处理。在最佳条件下,我们原位监测丝膜上 MnO 的形成,彻底冲洗后,原位催化 0.8mM 的 TMB 底物。作为对照,我们使用 KMnO4 在丝膜上的自动还原,约 16 小时后进行。单波长分析的结果证实了超声和自动还原形成 MnO 的不同动力学速率。多元组分分析的结果表明,超声和自动还原形成 MnO-丝的路线有三个组分。总的来说,我们发现,通过超声处理制备的丝膜中 MnO NPs 尺寸更小、单分散性更好、埋藏更深,赋予了杂化材料更高的催化活性和稳定性。