Suppr超能文献

超声处理增强 MnO 纳米颗粒在丝蛋白薄膜模板上的稳定性,用于模拟酶的应用。

Sonication enhances the stability of MnO nanoparticles on silk film template for enzyme mimic application.

机构信息

Dept. Chemistry, Division for Pure and Applied Biochemistry, Lund University, Sweden.

Dept. Chemistry, Division for Pure and Applied Biochemistry, Lund University, Sweden.

出版信息

Ultrason Sonochem. 2020 Jun;64:105011. doi: 10.1016/j.ultsonch.2020.105011. Epub 2020 Feb 7.

Abstract

We have developed an in-situ method using sonication (3 mm probe sonicator, 30 W, 20 kHz) and auto-reduction (control) to study the mechanism of the formation of manganese dioxide (MnO) on a solid template (silk film), and its resulting enzymatic activity on tetramethylbenzidine (TMB) substrate. The fabrication of the silk film was first optimized for stability (no degradation) and optical transparency. A factorial approach was used to assess the effect of sonication time and the initial concentration of potassium permanganate (KMnO). The result indicated a significant correlation with a fraction of KMnO consumed and MnO formation. Further, we found that the optimal process conditions to obtain a stable silk film with highly catalytic MnO nanoparticles (NPs) was 30 min of sonication in the presence of 0.5 mM of KMnO at a temperature of 20-24 °C. Under the optimal condition, we monitored in-situ the formation of MnO on the silk film, and after thorough rinsing, the in-situ catalysis of 0.8 mM of TMB substrate. For control, we used the auto-reduction of KMnO onto the silk film after about 16 h. The result from single-wavelength analysis confirmed the different kinetics rates for the formation of MnO via sonication and auto-reduction. The result from the multivariate component analysis indicated a three components route for sonication and auto-reduction to form MnO-Silk. Overall, we found that the smaller size, more mono-dispersed, and deeper buried MnO NPs in silk film prepared by sonication, conferred a higher catalytic activity and stability to the hybrid material.

摘要

我们开发了一种原位方法,使用超声处理(3mm 探头超声仪,30W,20kHz)和自动还原(对照)来研究二氧化锰(MnO)在固体模板(丝膜)上形成的机制,以及其对四甲基联苯胺(TMB)底物的酶活性。首先优化了丝膜的稳定性(无降解)和光学透明度。采用析因法评估了超声时间和高锰酸钾(KMnO4)初始浓度的影响。结果表明,MnO 的消耗分数和形成分数与超声时间和 KMnO4 的初始浓度有显著相关性。此外,我们发现,获得具有高催化 MnO 纳米粒子(NPs)的稳定丝膜的最佳工艺条件是在 20-24°C 温度下,用 0.5mM 的 KMnO4 进行 30 分钟的超声处理。在最佳条件下,我们原位监测丝膜上 MnO 的形成,彻底冲洗后,原位催化 0.8mM 的 TMB 底物。作为对照,我们使用 KMnO4 在丝膜上的自动还原,约 16 小时后进行。单波长分析的结果证实了超声和自动还原形成 MnO 的不同动力学速率。多元组分分析的结果表明,超声和自动还原形成 MnO-丝的路线有三个组分。总的来说,我们发现,通过超声处理制备的丝膜中 MnO NPs 尺寸更小、单分散性更好、埋藏更深,赋予了杂化材料更高的催化活性和稳定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验