Department of Civil and Environmental Engineering, The University of Western Ontario, Canada.
Geosyntec Consultants, Canada.
Waste Manag Res. 2020 May;38(5):554-566. doi: 10.1177/0734242X20904430. Epub 2020 Feb 26.
Growing stockpiles of waste oil sludge (WOS) are an outstanding problem worldwide. Self-sustaining Treatment for Active Remediation applied ex situ (STARx) is a treatment technology based on smoldering combustion. Pilot-scale experiments for the STARx Hottpad prove this new concept for the mobile treatment of WOS mixed intentionally with sand or contaminated soil. The experiments also allowed for the calibration and validation of a smoldering propagation numerical model. The model was used to systematically explore the sensitivity of Hottpad performance to system design, operational parameters, and environmental factors. Pilot-scale (1.5 m width) simulations investigated sensitivity to injected air flux, WOS saturation, heterogeneity of intrinsic permeability, and heterogeneity of WOS saturation. Results reveal that Hottpad design is predicted to be successful for WOS treatment across a wide range of scenarios. The operator can control the rate of WOS destruction and extent of treatment by increasing the air flux injected into the bed. The potential for smoldering channeling to develop was demonstrated for the first time. Under certain conditions, such as WOS saturations of 80%, high heterogeneity of WOS saturations, or moderate to high heterogeneity of soil permeability, smoldering channeling was predicted to accelerate to the point that remedial performance was degraded. Field-scale simulations (10 m width) predicted successful treatment, with WOS destruction rates an order of magnitude higher than the pilot-scale and treatment times increasing only linearly with bed height. This work is a key step toward the design and effective operation of field STARx Hottpad systems for eliminating WOS.
废油污泥(WOS)的大量堆积是一个全球性的突出问题。原位自维持主动修复处理(STARx)是一种基于闷烧燃烧的处理技术。STARx Hottpad 的中试实验证明了这一用于混合有意混入沙子或污染土壤的 WOS 的移动式处理新技术。该实验还允许对闷烧传播数值模型进行校准和验证。该模型被用于系统地研究 Hottpad 性能对系统设计、操作参数和环境因素的敏感性。中试规模 (1.5 米宽) 的模拟研究了对注入空气通量、WOS 饱和度、固有渗透率的非均质性和 WOS 饱和度的非均质性的敏感性。结果表明,Hottpad 设计有望在广泛的场景中成功用于 WOS 处理。操作人员可以通过增加注入床的空气通量来控制 WOS 的破坏速率和处理程度。首次证明了闷烧通道形成的可能性。在某些条件下,例如 WOS 饱和度为 80%、WOS 饱和度高度不均匀或土壤渗透率中等至高异质性,闷烧通道可能会加速,从而降低补救性能。现场规模模拟 (10 米宽) 预测了成功的处理,WOS 破坏速率比中试规模高出一个数量级,处理时间仅随床层高度线性增加。这项工作是设计和有效运行用于消除 WOS 的现场 STARx Hottpad 系统的关键一步。