Laboratory of Experimental and Clinical Pharmacology, Faculty of Medicine, Univ Rennes, CHU Rennes, 2 avenue du Professeur Léon Bernard, F-35000, Rennes, France.
Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Univ Rennes, 2 avenue du Professeur Léon Bernard, F-35000, Rennes, France.
Fundam Clin Pharmacol. 2020 Aug;34(4):476-483. doi: 10.1111/fcp.12541. Epub 2020 Feb 25.
The β-lactam penicillin antibiotic cloxacillin (CLX) presents wide inter-individual pharmacokinetics variability. To better understand its molecular basis, the precise identification of the detoxifying actors involved in CLX disposition and elimination would be useful, notably with respect to renal secretion known to play a notable role in CLX elimination. The present study was consequently designed to analyze the interactions of CLX with the solute carrier transporters organic anion transporter (OAT) 1 and OAT3, implicated in tubular secretion through mediating drug entry at the basolateral pole of renal proximal cells. CLX was first shown to block OAT1 and OAT3 activity in cultured OAT-overexpressing HEK293 cells. Half maximal inhibitory concentration (IC ) value for OAT3 (13 µm) was however much lower than that for OAT1 (560 µm); clinical inhibition of OAT activity and drug-drug interactions may consequently be predicted for OAT3, but not OAT1. OAT3, unlike OAT1, was next shown to mediate CLX uptake in OAT-overexpressing HEK293 cells. Kinetic parameters for this OAT3-mediated transport of CLX (K = 10.7 µm) were consistent with a possible in vivo saturation of this process for high CLX plasma concentrations. OAT3 is consequently likely to play a pivotal role in renal CLX secretion and consequently in total renal CLX elimination, owing to the low plasma unbound fraction of the antibiotic. OAT3 genetic polymorphisms as well as co-administered drugs inhibiting in vivo OAT3 activity may therefore be considered as potential sources of CLX pharmacokinetics variability.
β-内酰胺类青霉素抗生素氯唑西林(CLX)表现出广泛的个体间药代动力学变异性。为了更好地理解其分子基础,精确鉴定参与 CLX 处置和消除的解毒因子将是有用的,特别是考虑到已知在 CLX 消除中起重要作用的肾分泌。因此,本研究旨在分析 CLX 与溶质载体转运蛋白有机阴离子转运蛋白(OAT)1 和 OAT3 的相互作用,这些转运蛋白通过介导药物进入肾近端细胞基底外侧极参与肾小管分泌。首先表明 CLX 可在过表达 OAT 的 HEK293 细胞中抑制 OAT1 和 OAT3 的活性。然而,OAT3 的半最大抑制浓度(IC )值(13µm)远低于 OAT1(560µm);因此,可能预测 OAT3 而非 OAT1 会对 OAT 活性和药物相互作用产生临床抑制作用。与 OAT1 不同,OAT3 随后被证明可介导过表达 OAT 的 HEK293 细胞中 CLX 的摄取。该 OAT3 介导的 CLX 转运的动力学参数(K = 10.7µm)与该过程在高 CLX 血浆浓度下可能发生的体内饱和一致。OAT3 因此很可能在肾 CLX 分泌中起关键作用,进而在总肾 CLX 消除中起关键作用,这归因于抗生素的血浆未结合分数低。因此,OAT3 遗传多态性以及抑制体内 OAT3 活性的共同给药药物可被视为 CLX 药代动力学变异性的潜在来源。