Suppr超能文献

Photoreactivating enzyme from Escherichia coli: appearance of new absorption on binding to ultraviolet irradiated DNA.

作者信息

Wun K L, Gih A, Sutherland C

出版信息

Biochemistry. 1977 Mar 8;16(5):921-4. doi: 10.1021/bi00624a017.

Abstract

The photoreactivating enzyme, PRE, monomerizes pyrimidine dimers in DNA in a light requiring reaction (lambda greater than 300 nm). However, the purified PRE from E. coli has no well-defined absorption band for lambda greater than 300 nm. Using absorption difference spectroscopy, we show that when PRE is mixed with ultraviolet-irradiated DNA, new absorption appears in the spectral region required for catalysis. There is a concomitant decrease in the absorption of the mixture for wavelength less than 300 nm. The hyperchromicity for lambda greater than 300 nm is true absorption, not an artifact due to light scattering. Both the hyperchromicity (lambda greater than 300 nm) and hypochromicity (lambda less than 300 nm) can be reversed by irradiation of 365 nm with identical first-order kinetics. We estimate the molar extinction coefficient of the new absorption to be 6900 +/- 1400 at 350 nm. We conclude that the PRE from E. coli does not possess a distinct "chromophore" which by itself is entirely responsible for the absorption of photoreactivating light. Instead, new absorption results when PRE binds its substrate, dimer-containing DNA.

摘要

相似文献

8
Kinetics of photoreactivation.光复活动力学
Basic Life Sci. 1975;5A:89-101. doi: 10.1007/978-1-4684-2895-7_12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验