Suppr超能文献

计算鉴定和分析泛醌结合蛋白。

Computational Identification and Analysis of Ubiquinone-Binding Proteins.

机构信息

School of Information Science and Technology, Northeast Normal University, Changchun 130117, China.

Institute of Computational Biology, Northeast Normal University, Changchun 130117, China.

出版信息

Cells. 2020 Feb 24;9(2):520. doi: 10.3390/cells9020520.

Abstract

Ubiquinone is an important cofactor that plays vital and diverse roles in many biological processes. Ubiquinone-binding proteins (UBPs) are receptor proteins that dock with ubiquinones. Analyzing and identifying UBPs via a computational approach will provide insights into the pathways associated with ubiquinones. In this work, we were the first to propose a UBPs predictor (UBPs-Pred). The optimal feature subset selected from three categories of sequence-derived features was fed into the extreme gradient boosting (XGBoost) classifier, and the parameters of XGBoost were tuned by multi-objective particle swarm optimization (MOPSO). The experimental results over the independent validation demonstrated considerable prediction performance with a Matthews correlation coefficient (MCC) of 0.517. After that, we analyzed the UBPs using bioinformatics methods, including the statistics of the binding domain motifs and protein distribution, as well as an enrichment analysis of the gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway.

摘要

泛醌是一种重要的辅酶,在许多生物过程中发挥着至关重要和多样化的作用。泛醌结合蛋白(UBP)是与泛醌结合的受体蛋白。通过计算方法分析和鉴定 UBP 将为与泛醌相关的途径提供深入了解。在这项工作中,我们首次提出了 UBP 预测器(UBPs-Pred)。从三类序列衍生特征中选择的最优特征子集被输入极端梯度提升(XGBoost)分类器,XGBoost 的参数通过多目标粒子群优化(MOPSO)进行调整。在独立验证上的实验结果表明,具有相当可观的预测性能,马修斯相关系数(MCC)为 0.517。之后,我们使用生物信息学方法分析了 UBP,包括结合域基序和蛋白质分布的统计,以及基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路的富集分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48a3/7072731/bcc090e88145/cells-09-00520-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验