Suppr超能文献

过渡金属二硫属化物中的自发各向异性电子有序。

Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide.

机构信息

Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.

Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Nature. 2020 Feb;578(7796):545-549. doi: 10.1038/s41586-020-2011-8. Epub 2020 Feb 26.

Abstract

Chirality is ubiquitous in nature, and populations of opposite chiralities are surprisingly asymmetric at fundamental levels. Examples range from parity violation in the subatomic weak force to homochirality in biomolecules. The ability to achieve chirality-selective synthesis (chiral induction) is of great importance in stereochemistry, molecular biology and pharmacology. In condensed matter physics, a crystalline electronic system is geometrically chiral when it lacks mirror planes, space-inversion centres or rotoinversion axes. Typically, geometrical chirality is predefined by the chiral lattice structure of a material, which is fixed on formation of the crystal. By contrast, in materials with gyrotropic order, electrons spontaneously organize themselves to exhibit macroscopic chirality in an originally achiral lattice. Although such order-which has been proposed as the quantum analogue of cholesteric liquid crystals-has attracted considerable interest, no clear observation or manipulation of gyrotropic order has been achieved so far. Here we report the realization of optical chiral induction and the observation of a gyrotropically ordered phase in the transition-metal dichalcogenide semimetal 1T-TiSe. We show that shining mid-infrared circularly polarized light on 1T-TiSe while cooling it below the critical temperature leads to the preferential formation of one chiral domain. The chirality of this state is confirmed by the measurement of an out-of-plane circular photogalvanic current, the direction of which depends on the optical induction. Although the role of domain walls requires further investigation with local probes, the methodology demonstrated here can be applied to realize and control chiral electronic phases in other quantum materials.

摘要

手性在自然界中无处不在,而在基本层面上,具有相反手性的种群却呈现出惊人的不对称性。从亚原子弱相互作用中的宇称破缺到生物分子中的手性同质性,这些例子不胜枚举。在手性选择性合成(手性诱导)方面具有重要的能力,在立体化学、分子生物学和药理学中都具有重要的应用。在凝聚态物理中,当一个电子系统缺乏镜面、空间反演中心或旋转反演轴时,它在几何上就是手性的。通常情况下,几何手性是由材料的手性晶格结构预先定义的,而这种结构在晶体形成时就固定了。相比之下,在具有旋光有序的材料中,电子会自发地组织起来,在原本是非手性的晶格中表现出宏观手性。尽管这种有序性——它被提出是胆甾液晶的量子类似物——已经引起了广泛的关注,但到目前为止,还没有实现对旋光有序的明确观察或操纵。在这里,我们报告了在过渡金属二卤化物半导体 1T-TiSe 中实现光学手性诱导和观察到旋光有序相的实验结果。我们表明,在冷却 1T-TiSe 至临界温度以下的同时,用中红外圆偏振光照射它会导致一个手性畴的优先形成。通过测量垂直于平面的圆光电流,可以证实这个状态的手性,其方向取决于光的诱导。尽管畴壁的作用需要进一步用局部探针进行研究,但这里展示的方法可以应用于实现和控制其他量子材料中的手性电子相。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验