Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, USA.
International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.
Nature. 2019 Mar;567(7749):500-505. doi: 10.1038/s41586-019-1037-2. Epub 2019 Mar 20.
The quantum behaviour of electrons in materials is the foundation of modern electronics and information technology, and quantum materials with topological electronic and optical properties are essential for realizing quantized electronic responses that can be used for next generation technology. Here we report the first observation of topological quantum properties of chiral crystals in the RhSi family. We find that this material class hosts a quantum phase of matter that exhibits nearly ideal topological surface properties originating from the crystals' structural chirality. Electrons on the surface of these crystals show a highly unusual helicoid fermionic structure that spirals around two high-symmetry momenta, indicating electronic topological chirality. The existence of bulk multiply degenerate band fermions is guaranteed by the crystal symmetries; however, to determine the topological invariant or charge in these chiral crystals, it is essential to identify and study the helicoid topology of the arc states. The helicoid arcs that we observe on the surface characterize the topological charges of ±2, which arise from bulk higher-spin chiral fermions. These topological conductors exhibit giant Fermi arcs of maximum length (π), which are orders of magnitude larger than those found in known chiral Weyl fermion semimetals. Our results demonstrate an electronic topological state of matter on structurally chiral crystals featuring helicoid-arc quantum states. Such exotic multifold chiral fermion semimetal states could be used to detect a quantized photogalvanic optical response, the chiral magnetic effect and other optoelectronic phenomena predicted for this class of materials.
材料中电子的量子行为是现代电子和信息技术的基础,而具有拓扑电子和光学性质的量子材料对于实现可用于下一代技术的量子电子响应至关重要。在这里,我们报告了在 RhSi 族中首次观察到手性晶体的拓扑量子特性。我们发现,这类材料具有一种物质的量子相,它源于晶体结构的手性,表现出近乎理想的拓扑表面特性。这些晶体表面上的电子表现出一种非常不寻常的螺旋费米子结构,在两个高对称动量周围螺旋运动,表明电子拓扑手性。晶体对称性保证了体多简并带费米子的存在;然而,为了确定这些手性晶体中的拓扑不变量或电荷,必须识别和研究弧态的螺旋拓扑。我们在表面上观察到的螺旋弧表征了拓扑电荷为±2,它来自体更高自旋手性费米子。这些拓扑导体表现出最大长度(π)的巨大费米弧,比在已知手性外尔费米子半金属中发现的费米弧大几个数量级。我们的结果证明了在具有螺旋弧量子态的结构手性晶体中的物质的电子拓扑态。这种奇异的多重手性费米子半金属态可用于检测预测这类材料的量子光电流光响应、手性磁效应和其他光电现象。