Suppr超能文献

研究工业丁醇高产菌梭菌 N1-4 的次生代谢。

Investigation of secondary metabolism in the industrial butanol hyper-producer Clostridium saccharoperbutylacetonicum N1-4.

机构信息

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.

Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA.

出版信息

J Ind Microbiol Biotechnol. 2020 Mar;47(3):319-328. doi: 10.1007/s10295-020-02266-8. Epub 2020 Feb 26.

Abstract

Clostridium saccharoperbutylacetonicum N1-4 (Csa) is a historically significant anaerobic bacterium which can perform saccharolytic fermentations to produce acetone, butanol, and ethanol (ABE). Recent genomic analyses have highlighted this organism's potential to produce polyketide and nonribosomal peptide secondary metabolites, but little is known regarding the identity and function of these metabolites. This study provides a detailed bioinformatic analysis of seven biosynthetic gene clusters (BGCs) present in the Csa genome that are predicted to produce polyketides/nonribosomal peptides. An RNA-seq-based untargeted transcriptomic approach revealed that five of seven BGCs were expressed during ABE fermentation. Additional characterization of a highly expressed nonribosomal peptide synthetase gene led to the discovery of its associated metabolite and its biosynthetic pathway. Transcriptomic analysis suggested an association of this nonribosomal peptide synthetase gene with butanol tolerance, which was supported by butanol challenge assays.

摘要

丙酮丁醇梭菌 N1-4(Csa)是一种历史上重要的厌氧细菌,能够进行糖解发酵以生产丙酮、丁醇和乙醇(ABE)。最近的基因组分析强调了该生物体产生聚酮和非核糖体肽类次生产物的潜力,但对于这些代谢物的身份和功能知之甚少。本研究对 Csa 基因组中存在的 7 个预测产生聚酮/非核糖体肽的生物合成基因簇(BGC)进行了详细的生物信息学分析。基于 RNA-seq 的非靶向转录组学方法表明,7 个 BGC 中有 5 个在 ABE 发酵过程中表达。对高度表达的非核糖体肽合酶基因的进一步表征导致发现了其相关代谢物及其生物合成途径。转录组分析表明,该非核糖体肽合酶基因与丁醇耐受性有关,丁醇挑战实验也支持了这一关联。

相似文献

1
Investigation of secondary metabolism in the industrial butanol hyper-producer Clostridium saccharoperbutylacetonicum N1-4.
J Ind Microbiol Biotechnol. 2020 Mar;47(3):319-328. doi: 10.1007/s10295-020-02266-8. Epub 2020 Feb 26.
2
Increased Butyrate Production in Clostridium saccharoperbutylacetonicum from Lignocellulose-Derived Sugars.
Appl Environ Microbiol. 2022 Apr 12;88(7):e0241921. doi: 10.1128/aem.02419-21. Epub 2022 Mar 21.
4
Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4.
Appl Biochem Biotechnol. 2010 May;161(1-8):157-70. doi: 10.1007/s12010-009-8770-1. Epub 2009 Sep 22.

引用本文的文献

1
Synthetic Biology in Natural Product Biosynthesis.
Chem Rev. 2025 Apr 9;125(7):3814-3931. doi: 10.1021/acs.chemrev.4c00567. Epub 2025 Mar 21.
2
Phylogenomics and genetic analysis of solvent-producing Clostridium species.
Sci Data. 2024 May 1;11(1):432. doi: 10.1038/s41597-024-03210-6.
3
Peeling back the many layers of competitive exclusion.
Front Microbiol. 2024 Mar 21;15:1342887. doi: 10.3389/fmicb.2024.1342887. eCollection 2024.
4
Increased Butyrate Production in Clostridium saccharoperbutylacetonicum from Lignocellulose-Derived Sugars.
Appl Environ Microbiol. 2022 Apr 12;88(7):e0241921. doi: 10.1128/aem.02419-21. Epub 2022 Mar 21.
5
Sporulation in solventogenic and acetogenic clostridia.
Appl Microbiol Biotechnol. 2021 May;105(9):3533-3557. doi: 10.1007/s00253-021-11289-9. Epub 2021 Apr 26.
6
Butanol Tolerance of : A Transcriptome Study.
Genes (Basel). 2021 Jan 27;12(2):181. doi: 10.3390/genes12020181.
7
An Unexpected Split-Merge Pathway in the Assembly of the Symmetric Nonribosomal Peptide Antibiotic Closthioamide.
Angew Chem Int Ed Engl. 2021 Feb 19;60(8):4104-4109. doi: 10.1002/anie.202011741. Epub 2020 Dec 23.
8
Discovery and Biosynthesis of Clostyrylpyrones from the Obligate Anaerobe .
Org Lett. 2020 Nov 6;22(21):8204-8209. doi: 10.1021/acs.orglett.0c02656. Epub 2020 Oct 14.
9
Induced Production, Synthesis, and Immunomodulatory Action of Clostrisulfone, a Diarylsulfone from Clostridium acetobutylicum.
Chemistry. 2020 Dec 4;26(68):15855-15858. doi: 10.1002/chem.202003500. Epub 2020 Nov 3.

本文引用的文献

1
A computational framework to explore large-scale biosynthetic diversity.
Nat Chem Biol. 2020 Jan;16(1):60-68. doi: 10.1038/s41589-019-0400-9. Epub 2019 Nov 25.
2
antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline.
Nucleic Acids Res. 2019 Jul 2;47(W1):W81-W87. doi: 10.1093/nar/gkz310.
3
Natural products from anaerobes.
J Ind Microbiol Biotechnol. 2019 Mar;46(3-4):375-383. doi: 10.1007/s10295-018-2086-5. Epub 2018 Oct 3.
6
PRISM 3: expanded prediction of natural product chemical structures from microbial genomes.
Nucleic Acids Res. 2017 Jul 3;45(W1):W49-W54. doi: 10.1093/nar/gkx320.
7
Discovery of Reactive Microbiota-Derived Metabolites that Inhibit Host Proteases.
Cell. 2017 Jan 26;168(3):517-526.e18. doi: 10.1016/j.cell.2016.12.021. Epub 2017 Jan 19.
9
CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii.
Biotechnol J. 2016 Jul;11(7):961-72. doi: 10.1002/biot.201600053. Epub 2016 Jun 13.
10
Industrial production of acetone and butanol by fermentation-100 years later.
FEMS Microbiol Lett. 2016 Jul;363(13). doi: 10.1093/femsle/fnw134. Epub 2016 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验