Changchun University of Science and Technology, School of Computer Science and Technology, WeiXing Road, Changchun 130022, China.
Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China.
Comput Math Methods Med. 2020 Feb 12;2020:5487168. doi: 10.1155/2020/5487168. eCollection 2020.
Multimodal medical images are useful for observing tissue structure clearly in clinical practice. To integrate multimodal information, multimodal registration is significant. The entropy-based registration applies a structure descriptor set to replace the original multimodal image and compute similarity to express the correlation of images. The accuracy and converging rate of the registration depend on this set. We propose a new method, logarithmic fuzzy entropy function, to compute the descriptor set. It is obvious that the proposed method can increase the upper bound value from log() to log() + ∆() so that a more representative structural descriptor set is formed. The experiment results show that our method has faster converging rate and wider quantified range in multimodal medical images registration.
多模态医学图像在临床实践中有助于清晰观察组织结构。为了整合多模态信息,多模态配准非常重要。基于熵的配准应用结构描述符集来替换原始的多模态图像,并计算相似性来表示图像的相关性。配准的准确性和收敛速度取决于这个集合。我们提出了一种新的方法,对数模糊熵函数,来计算描述符集。显然,所提出的方法可以将上限值从 log()增加到 log() + ∆(),从而形成一个更具代表性的结构描述符集。实验结果表明,我们的方法在多模态医学图像配准中具有更快的收敛速度和更广泛的量化范围。