Karner Carina, Dellago Christoph, Bianchi Emanuela
Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria.
Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.
Soft Matter. 2020 Mar 18;16(11):2774-2785. doi: 10.1039/d0sm00044b.
Anisotropy at the level of the inter-particle interaction provides the particles with specific instructions for the self-assembly of target structures. The ability to synthesize non-spherical colloids, together with the possibility of controlling the particle bonding pattern via suitably placed interaction sites, is nowadays enlarging the playing field for materials design. We consider a model of anisotropic colloidal platelets with regular rhombic shape and two attractive sites placed along adjacent edges and we run Monte Carlo simulations in two-dimensions to investigate the two-stage assembly of these units into clusters with well-defined symmetries and, subsequently, into extended lattices. Our focus is on how the site positioning and site-site attraction strength can be tuned to obtain micellar aggregates that are robust enough to successively undergo to a second-stage assembly from sparse clusters into a stable hexagonal lattice.
颗粒间相互作用层面的各向异性为颗粒提供了自组装成目标结构的特定指令。如今,合成非球形胶体的能力,以及通过适当放置相互作用位点来控制颗粒键合模式的可能性,正在扩大材料设计的领域。我们考虑一个具有规则菱形形状且沿相邻边缘设置两个吸引位点的各向异性胶体薄片模型,并在二维空间中进行蒙特卡罗模拟,以研究这些单元分两阶段组装成具有明确对称性的团簇,随后再组装成扩展晶格的过程。我们关注的是如何调整位点定位和位点间吸引强度,以获得足够稳定的胶束聚集体,使其能够依次经历从稀疏团簇到稳定六边形晶格的第二阶段组装。