Suppr超能文献

基于多 RNA 类型的签名用于预测子宫体子宫内膜癌患者无复发生存。

Identification of a Multi-RNA-Type-Based Signature for Recurrence-Free Survival Prediction in Patients with Uterine Corpus Endometrial Carcinoma.

机构信息

Department of Obstetrics and Gynecology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China.

Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.

出版信息

DNA Cell Biol. 2020 Apr;39(4):615-630. doi: 10.1089/dna.2019.5148. Epub 2020 Feb 27.

Abstract

Uterine corpus endometrial carcinoma (UCEC) is one of the leading causes of death from gynecological cancer due to the high recurrence rate. A recent study indicated that molecular biomarkers can enhance the recurrence prediction power if they were integrated with clinical information. In this study, we attempted to identify a new multi-RNA-type-based molecular biomarker for predicting the recurrence risk and recurrence-free survival (RFS). Matched mRNA (including lncRNA) and miRNA RNA-sequencing data from 463 UCEC patients ( = 75, recurrent;  = 388, non-recurrent) were downloaded from The Cancer Genome Atlas database. LASSO (least absolute shrinkage and selection operator) analysis was used to screen the optimal combination of prognostic RNAs and then the risk score model was constructed. Moreover, the molecular mechanisms of prognostic RNAs were explored by establishing various interaction networks based on corresponding predictive databases. A multi-RNA-type-based signature (including three miRNAs: hsa-miR-6511b, hsa-miR-184, hsa-miR-4461; three lncRNAs: ENO1-IT1, MCCC1-AS1, AATBC; and 7 mRNAs: , , , , , , ) was developed for the prediction of RFS. The risk scoring system established by these signature genes was effective for the discrimination of the 5-year RFS in the high-risk from low-risk patients in the training [an area under the receiver operating characteristic curve (AUC) = 0.960], validation (AUC = 0.863), and entire datasets (AUC = 0.873). This risk score model was also proved to be a more excellent, independent prognostic discriminator than the single-RNA-type (overall AUC: 0.947 vs. 0.677, lncRNAs; 0.709, miRNAs; 0.899, mRNAs) and clinical staging (overall AUC: 0.947 vs. 0.517). Furthermore, the downstream mechanisms for some prognostic miRNAs or lncRNAs (HAND2-AS1-hsa-miR-6511b-, PAX8-AS1-hsa-miR-4461- and MCCC1-AS1/ENO1-IT1-) were newly predicted based on the coexpression or competitive endogenous RNA theories. In conclusion, our findings may provide novel biomarkers for recurrence prediction and targets for treatment of UCEC.

摘要

子宫内膜癌(Uterine corpus endometrial carcinoma,UCEC)是妇科癌症死亡的主要原因之一,其高复发率是主要原因之一。最近的一项研究表明,如果将分子生物标志物与临床信息相结合,它们可以提高复发预测能力。在这项研究中,我们试图确定一种新的基于多 RNA 类型的分子生物标志物,用于预测复发风险和无复发生存率(Recurrence-free survival,RFS)。从癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据库中下载了 463 名 UCEC 患者的匹配 mRNA(包括 lncRNA)和 miRNA RNA-seq 数据( = 75,复发; = 388,非复发)。使用最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)分析筛选预后 RNA 的最佳组合,然后构建风险评分模型。此外,还通过建立基于相应预测数据库的各种相互作用网络来探索预后 RNA 的分子机制。建立了一个基于多 RNA 类型的特征(包括三个 miRNA:hsa-miR-6511b、hsa-miR-184、hsa-miR-4461;三个 lncRNA:ENO1-IT1、MCCC1-AS1、AATBC;和 7 个 mRNA: , , , , , ),用于预测 RFS。该signature 基因建立的风险评分系统可有效区分训练[受试者工作特征曲线下面积(area under the receiver operating characteristic curve,AUC)= 0.960]、验证(AUC = 0.863)和整个数据集(AUC = 0.873)中高危和低危患者的 5 年 RFS。该风险评分模型也被证明是比单一 RNA 类型(总 AUC:0.947 与 0.677(lncRNAs);0.709(miRNAs);0.899(mRNAs)和临床分期(总 AUC:0.947 与 0.517)更优秀的独立预后鉴别器。此外,基于共表达或竞争内源性 RNA 理论,对某些预后 miRNA 或 lncRNA(HAND2-AS1-hsa-miR-6511b-、PAX8-AS1-hsa-miR-4461-和 MCCC1-AS1/ENO1-IT1-)的下游机制进行了新的预测。总之,我们的研究结果可能为 UCEC 的复发预测提供新的生物标志物和治疗靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验