Program in Health Sciences, Cruzeiro do Sul University, 01506-000, São Paulo, SP, Brazil.
Departement de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, QC, H1X 2B2, Montreal, Canada.
Aquat Toxicol. 2020 May;222:105450. doi: 10.1016/j.aquatox.2020.105450. Epub 2020 Feb 18.
The toxicity of heavy metals in algal monocultures is well studied and is mediated by reactive oxygen and nitrogen species (ROS/RNS). However, little is known about the toxicity of heavy metals and the mechanisms involved in mixed cultures. Here we examine the oxidative stress and toxic effects of Cu on the green alga Dunaliella salina (DS) and the cyanobacteria Synecochoccus elongatus (SE) in both mono- and mixed cultures. We find that both species benefit in mixed cultures and acquire higher resistance to Cu toxicity, with a particularly marked effect on SE. DS has a larger surface area than SE, so increases in the number of DS cells compared to SE diminishes the proportion of SE surface area exposed to Cu, and contributes to increasing cyanobacterial resistance in mixed cultures. However, these mixed cultures also display as an unexpected property an increased resistance of DS in mixed cultures. SE and DS cells showed significant differences on the kinetics of HO production and antioxidant capacities. The integrated (overall) redox response of mixed cultures, in terms of total amount of HO produced, was proportional to the total surface area of algal species exposed to Cu, independent of algal composition in mixed systems. However, mixed cultures display emergent properties, as the time course of HO accumulation is not a simple function of the composition of the mixed cultures. Emergent properties are also observed in the speed of membrane lipid oxidation by the two species, as measured using mixed cultures in which only one of the two species is labeled using the membrane oxidation indicator C-BODIPY. We suggest that, in addition to HO¸ other redox signals (e.g. NO) and allelochemicals (auxins, cytokinins, etc.) may be used to construct a complex inter-species communication network. This could allow mixed algal systems, whatever their composition, to integrate their cellular responses and perform as a coherent unit against toxic Cu ions.
藻类纯培养物中重金属的毒性及其作用机制已经得到了深入研究,其毒性是通过活性氧和氮物质(ROS/RNS)介导的。然而,对于重金属的毒性及其在混合培养物中的作用机制知之甚少。在这里,我们研究了 Cu 对绿藻杜氏盐藻(DS)和鱼腥藻(SE)的单一和混合培养物的氧化应激和毒性作用。我们发现,这两个物种在混合培养物中都能受益,并获得更高的 Cu 毒性抗性,对 SE 的影响尤其显著。DS 的表面积大于 SE,因此与 SE 相比,DS 细胞数量的增加会减少暴露于 Cu 的 SE 表面积的比例,从而有助于增加混合培养物中的蓝藻抗性。然而,这些混合培养物还表现出一种意想不到的特性,即混合培养物中 DS 的抗性增加。SE 和 DS 细胞在 HO 产生动力学和抗氧化能力方面表现出显著差异。从 HO 产生总量来看,混合培养物的综合(整体)氧化还原反应与暴露于 Cu 的藻类物种的总表面积成正比,而与混合系统中藻类的组成无关。然而,混合培养物表现出突现特性,因为 HO 积累的时间过程不是混合培养物组成的简单函数。两种物种的细胞膜脂质氧化速度也表现出突现特性,这可以通过使用混合培养物来测量,其中只有一种物种使用细胞膜氧化指示剂 C-BODIPY 进行标记。我们认为,除了 HO 之外,其他氧化还原信号(如 NO)和化感物质(植物激素、细胞分裂素等)也可能被用来构建一个复杂的种间通讯网络。这可以使混合藻类系统(无论其组成如何)整合其细胞反应,并作为一个有凝聚力的单元来应对有毒的 Cu 离子。