Suppr超能文献

R 环结构在拓扑应力管理中的新兴作用。

Emerging roles for R-loop structures in the management of topological stress.

机构信息

Department of Molecular and Cellular Biology, University of California, Davis, California 95616

Genome Center, University of California, Davis, California 95616.

出版信息

J Biol Chem. 2020 Apr 3;295(14):4684-4695. doi: 10.1074/jbc.REV119.006364. Epub 2020 Feb 27.

Abstract

R-loop structures are a prevalent class of alternative non-B DNA structures that form during transcription upon invasion of the DNA template by the nascent RNA. R-loops form universally in the genomes of organisms ranging from bacteriophages, bacteria, and yeasts to plants and animals, including mammals. A growing body of work has linked these structures to both physiological and pathological processes, in particular to genome instability. The rising interest in R-loops is placing new emphasis on understanding the fundamental physicochemical forces driving their formation and stability. Pioneering work in revealed that DNA topology, in particular negative DNA superhelicity, plays a key role in driving R-loops. A clear role for DNA sequence was later uncovered. Here, we review and synthesize available evidence on the roles of DNA sequence and DNA topology in controlling R-loop formation and stability. Factoring in recent developments in R-loop modeling and single-molecule profiling, we propose a coherent model accounting for the interplay between DNA sequence and DNA topology in driving R-loop structure formation. This model reveals R-loops in a new light as powerful and reversible topological stress relievers, an insight that significantly expands the repertoire of R-loops' potential biological roles under both normal and aberrant conditions.

摘要

R 环结构是一种普遍存在的替代非 B DNA 结构,在转录过程中,新生 RNA 侵入 DNA 模板时形成。R 环普遍存在于从噬菌体、细菌和酵母到植物和动物(包括哺乳动物)的生物体的基因组中。越来越多的研究将这些结构与生理和病理过程联系起来,特别是与基因组不稳定性有关。对 R 环的兴趣日益浓厚,这使得人们更加重视理解驱动它们形成和稳定的基本物理化学力。开创性的工作表明,DNA 拓扑结构,特别是负 DNA 超螺旋,在驱动 R 环形成中起着关键作用。后来发现 DNA 序列也起着明显的作用。在这里,我们回顾和综合了关于 DNA 序列和 DNA 拓扑结构在控制 R 环形成和稳定性方面的作用的现有证据。考虑到 R 环建模和单分子分析方面的最新进展,我们提出了一个连贯的模型,解释了 DNA 序列和 DNA 拓扑结构在驱动 R 环结构形成中的相互作用。该模型揭示了 R 环作为强大且可逆的拓扑压力缓解剂的新作用,这一见解大大扩展了 R 环在正常和异常条件下的潜在生物学作用的范围。

相似文献

1
Emerging roles for R-loop structures in the management of topological stress.R 环结构在拓扑应力管理中的新兴作用。
J Biol Chem. 2020 Apr 3;295(14):4684-4695. doi: 10.1074/jbc.REV119.006364. Epub 2020 Feb 27.
2
Interplay between DNA sequence and negative superhelicity drives R-loop structures.DNA 序列与负超螺旋之间的相互作用驱动 R 环结构。
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6260-6269. doi: 10.1073/pnas.1819476116. Epub 2019 Mar 8.
3
New insight into the biology of R-loops.对 R 环生物学的新认识。
Mutat Res. 2020 May-Dec;821:111711. doi: 10.1016/j.mrfmmm.2020.111711. Epub 2020 May 28.
4
Replisome bypass of transcription complexes and R-loops.复制体复合物和 R 环的转录越过。
Nucleic Acids Res. 2020 Oct 9;48(18):10353-10367. doi: 10.1093/nar/gkaa741.
6
R-loop-dependent replication and genomic instability in bacteria.R 环依赖的复制和细菌中的基因组不稳定性。
DNA Repair (Amst). 2019 Dec;84:102693. doi: 10.1016/j.dnarep.2019.102693. Epub 2019 Aug 21.
7
R-Loop Physiology and Pathology: A Brief Review.R 环的生理学和病理学:简要综述。
DNA Cell Biol. 2020 Nov;39(11):1914-1925. doi: 10.1089/dna.2020.5906. Epub 2020 Oct 14.
8
Defining R-loop classes and their contributions to genome instability.定义 R 环类别及其对基因组不稳定性的贡献。
DNA Repair (Amst). 2021 Oct;106:103182. doi: 10.1016/j.dnarep.2021.103182. Epub 2021 Jul 17.

引用本文的文献

6
Mechanisms underlining R-loop biology and implications for human disease.R环生物学的潜在机制及其对人类疾病的影响。
Front Cell Dev Biol. 2025 Feb 21;13:1537731. doi: 10.3389/fcell.2025.1537731. eCollection 2025.

本文引用的文献

4
The mitochondrial R-loop.线粒体 R 环。
Nucleic Acids Res. 2019 Jun 20;47(11):5480-5489. doi: 10.1093/nar/gkz277.
5
Interplay between DNA sequence and negative superhelicity drives R-loop structures.DNA 序列与负超螺旋之间的相互作用驱动 R 环结构。
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6260-6269. doi: 10.1073/pnas.1819476116. Epub 2019 Mar 8.
6
R-Loops as Cellular Regulators and Genomic Threats.R-Loops 作为细胞调控因子和基因组威胁
Mol Cell. 2019 Feb 7;73(3):398-411. doi: 10.1016/j.molcel.2019.01.024.
8
Are TADs supercoiled?TADs 是否超螺旋?
Nucleic Acids Res. 2019 Jan 25;47(2):521-532. doi: 10.1093/nar/gky1091.
9
Organizational principles of 3D genome architecture.三维基因组结构的组织原则。
Nat Rev Genet. 2018 Dec;19(12):789-800. doi: 10.1038/s41576-018-0060-8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验