Pineau Maïwenn, Forquet Raphaël, Reverchon Sylvie, Nasser William, Hommais Florence, Meyer Sam
Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, 69621 Villeurbanne, France.
Nucleic Acids Res. 2025 May 22;53(10). doi: 10.1093/nar/gkaf452.
While classical models of transcriptional regulation focus on transcription factors binding at promoters, gene expression is also influenced by chromosome organization. Understanding this spatial regulation strongly benefits from integrated and quantitative spatial analyses of genome-scale data such as RNA-Seq and ChIP-Seq. We introduce Genome Regulation Analysis Tool Incorporating Organization and Spatial Architecture (GRATIOSA), a Python package making such combined analyses more systematic and reproducible. While current software focuses on initial analysis steps (read mapping and counting), GRATIOSA proposes an integrated framework for subsequent analyses, providing a broad range of spatially resolved quantitative data analyses, comparisons, and representations. Several tutorials illustrate applications across diverse species for typical tasks involving RNA-Seq, ChIP-Seq, and processed Hi-C data. We also use the software to quantitatively assess the validity and extension of the twin-supercoiled domain model in Escherichia coli genome-wide transcription, using recent topoisomerase ChIP-Seq data. We show that topoisomerases are locally recruited specifically by the 40% most highly expressed transcription units, with magnitudes correlating with expression levels. The recruitment of topoisomerase I extends to around 10 kb upstream, whereas DNA gyrase is recruited at least 30 kb downstream of transcription units, with subtle requirements for each enzyme depending on the orientation and expression level.
虽然经典的转录调控模型侧重于转录因子与启动子的结合,但基因表达也受到染色体组织的影响。对基因组规模数据(如RNA测序和染色质免疫沉淀测序)进行综合定量空间分析,对于理解这种空间调控有很大帮助。我们引入了整合组织与空间结构的基因组调控分析工具(GRATIOSA),这是一个Python软件包,可使此类综合分析更具系统性和可重复性。当前软件主要关注初始分析步骤( reads比对和计数),而GRATIOSA为后续分析提供了一个集成框架,可提供广泛的空间分辨定量数据分析、比较和展示。几个教程展示了该软件在不同物种中针对涉及RNA测序、染色质免疫沉淀测序和处理后的Hi-C数据的典型任务的应用。我们还使用该软件,利用最近的拓扑异构酶染色质免疫沉淀测序数据,定量评估双超螺旋结构域模型在大肠杆菌全基因组转录中的有效性和扩展性。我们发现,拓扑异构酶是由40%表达量最高的转录单元特异性地在局部招募的,招募量与表达水平相关。拓扑异构酶I的招募延伸到转录单元上游约10 kb处,而DNA促旋酶则在转录单元下游至少30 kb处被招募,每种酶的招募有细微的要求,这取决于转录方向和表达水平。