Suppr超能文献

急性脑损伤患者中2HELPS2B癫痫发作风险评分的验证

Validation of the 2HELPS2B Seizure Risk Score in Acute Brain Injury Patients.

作者信息

Moffet Eric W, Subramaniam Thanujaa, Hirsch Lawrence J, Gilmore Emily J, Lee Jong Woo, Rodriguez-Ruiz Andres A, Haider Hiba A, Dhakar Monica B, Jadeja Neville, Osman Gamaledin, Gaspard Nicolas, Struck Aaron F

机构信息

Department of Neurology, University of Wisconsin School of Medicine and Public Health, 7131 MFCB, 600 Highland Avenue, Madison, WI, 53705, USA.

Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

出版信息

Neurocrit Care. 2020 Dec;33(3):701-707. doi: 10.1007/s12028-020-00939-x.

Abstract

BACKGROUND AND OBJECTIVE

Seizures are common after traumatic brain injury (TBI), aneurysmal subarachnoid hemorrhage (aSAH), subdural hematoma (SDH), and non-traumatic intraparenchymal hemorrhage (IPH)-collectively defined herein as acute brain injury (ABI). Most seizures in ABI are subclinical, meaning that they are only detectable with EEG. A method is required to identify patients at greatest risk of seizures and thereby in need of prolonged continuous EEG monitoring. 2HELPS2B is a simple point system developed to address this need. 2HELPS2B estimates seizure risk for hospitalized patients using five EEG findings and one clinical finding (pre-EEG seizure). The initial 2HELPS2B study did not specifically assess the ABI subpopulation. In this study, we aim to validate the 2HELPS2B score in ABI and determine its relative predictive accuracy compared to a broader set of clinical and electrographic factors.

METHODS

We queried the Critical Care EEG Monitoring Research Consortium database for ABI patients age ≥ 18 with > 6 h of continuous EEG monitoring; data were collected between February 2013 and November 2018. The primary outcome was electrographic seizure. Clinical factors considered were age, coma, encephalopathy, ABI subtype, and acute suspected or confirmed pre-EEG clinical seizure. Electrographic factors included 18 EEG findings. Predictive accuracy was assessed using a machine-learning paradigm with area under the receiver operator characteristic (ROC) curve as the primary outcome metric. Three models (clinical factors alone, EEG factors alone, EEG and clinical factors combined) were generated using elastic-net logistic regression. Models were compared to each other and to the 2HELPS2B model. All models were evaluated by calculating the area under the curve (AUC) of a ROC analysis and then compared using permutation testing of AUC with bootstrapping to generate confidence intervals.

RESULTS

A total of 1528 ABI patients were included. Total seizure incidence was 13.9%. Seizure incidence among ABI subtype varied: IPH 17.2%, SDH 19.1%, aSAH 7.6%, TBI 9.2%. Age ≥ 65 (p = 0.015) and pre-cEEG acute clinical seizure (p < 0.001) positively affected seizure incidence. Clinical factors AUC = 0.65 [95% CI 0.60-0.71], EEG factors AUC = 0.82 [95% CI 0.77-0.87], and EEG and clinical factors combined AUC = 0.84 [95% CI 0.80-0.88]. 2HELPS2B AUC = 0.81 [95% CI 0.76-0.85]. The 2HELPS2B AUC did not differ from EEG factors (p = 0.51), or EEG and clinical factors combined (p = 0.23), but was superior to clinical factors alone (p < 0.001).

CONCLUSIONS

Accurate seizure risk forecasting in ABI requires the assessment of EEG markers of pathologic electro-cerebral activity (e.g., sporadic epileptiform discharges and lateralized periodic discharges). The 2HELPS2B score is a reliable and simple method to quantify these EEG findings and their associated risk of seizure.

摘要

背景与目的

创伤性脑损伤(TBI)、动脉瘤性蛛网膜下腔出血(aSAH)、硬膜下血肿(SDH)和非创伤性脑实质内出血(IPH)后癫痫发作很常见,本文将这些情况统称为急性脑损伤(ABI)。ABI中的大多数癫痫发作是亚临床的,即只有通过脑电图(EEG)才能检测到。需要一种方法来识别癫痫发作风险最高、因此需要延长持续脑电图监测的患者。2HELPS2B是为满足这一需求而开发的一种简单评分系统。2HELPS2B利用五项脑电图结果和一项临床结果(脑电图检查前癫痫发作)来评估住院患者的癫痫发作风险。最初的2HELPS2B研究并未专门评估ABI亚组。在本研究中,我们旨在验证2HELPS2B评分在ABI中的有效性,并确定其与更广泛的临床和脑电图因素相比的相对预测准确性。

方法

我们查询了重症监护脑电图监测研究联盟数据库,纳入年龄≥18岁、接受持续脑电图监测超过6小时的ABI患者;数据收集时间为2013年2月至2018年11月。主要结局是脑电图癫痫发作。考虑的临床因素包括年龄、昏迷、脑病、ABI亚型以及急性疑似或确诊的脑电图检查前临床癫痫发作。脑电图因素包括18项脑电图结果。使用机器学习范式评估预测准确性,以受试者操作特征(ROC)曲线下面积作为主要结局指标。使用弹性网逻辑回归生成三个模型(仅临床因素、仅脑电图因素、脑电图和临床因素联合)。将这些模型相互比较,并与2HELPS2B模型进行比较。通过计算ROC分析的曲线下面积(AUC)对所有模型进行评估,然后使用AUC的置换检验和自抽样法生成置信区间进行比较。

结果

共纳入1528例ABI患者。癫痫发作总发生率为13.9%。ABI各亚型的癫痫发作发生率有所不同:IPH为17.2%,SDH为19.1%,aSAH为7.6%,TBI为9.2%。年龄≥65岁(p = 0.015)和脑电图检查前急性临床癫痫发作(p < 0.001)对癫痫发作发生率有正向影响。临床因素的AUC = 0.65 [95% CI 0.60 - 0.71],脑电图因素的AUC = 0.82 [95% CI 0.77 - 0.87],脑电图和临床因素联合的AUC = 0.84 [95% CI 0.80 - 0.88]。2HELPS2B的AUC = 0.81 [95% CI 0.76 - 0.85]。2HELPS2B的AUC与脑电图因素(p = 0.51)或脑电图和临床因素联合(p = 0.23)无差异,但优于仅临床因素(p < 0.001)。

结论

准确预测ABI患者的癫痫发作风险需要评估病理性脑电活动的脑电图标志物(如散发性癫痫样放电和局限性周期性放电)。2HELPS2B评分是量化这些脑电图结果及其相关癫痫发作风险的一种可靠且简单的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验