Suppr超能文献

临床研究的高级数据分析 第二部分:在心胸外科的应用。

Advanced Data Analytics for Clinical Research Part II: Application to Cardiothoracic Surgery.

机构信息

4002 Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, USA.

4002 Institutional Analytics and Informatics, University of Texas MD Anderson Cancer Center, Houston, USA.

出版信息

Innovations (Phila). 2020 Mar/Apr;15(2):155-162. doi: 10.1177/1556984520902824. Epub 2020 Feb 28.

Abstract

In the first part of this series, we introduced the tools of Big Data, including Not Only Standard Query Language data warehouse, natural language processing (NLP), optical character recognition (OCR), and Internet of Things (IoT). There are nuances to the utilization of these analytics tools, which must be well understood by clinicians seeking to take advantage of these innovative research strategies. One must recognize technical challenges to NLP, such as unintended search outcomes and variability in the expression of human written texts. Other caveats include dealing written texts in image formats, which may ultimately be handled with transformation to text format by OCR, though this technology is still under development. IoT is beginning to be used in cardiac monitoring, medication adherence alerts, lifestyle monitoring, and saving traditional labs from equipment failure catastrophes. These technologies will become more prevalent in the future research landscape, and cardiothoracic surgeons should understand the advantages of these technologies to propel our research to the next level. Experience and understanding of technology are needed in building a robust NLP search result, and effective communication with the data management team is a crucial step in successful utilization of these technologies. In this second installment of the series, we provide examples of published investigations utilizing the advanced analytic tools introduced in Part I. We will explain our processes in developing the research question, barriers to achieving the research goals using traditional research methods, tools used to overcome the barriers, and the research findings.

摘要

在本系列的第一部分中,我们介绍了大数据的工具,包括不限于标准查询语言数据仓库、自然语言处理(NLP)、光学字符识别(OCR)和物联网(IoT)。临床医生若想利用这些创新的研究策略,必须充分了解这些分析工具的细微差别。必须认识到 NLP 的技术挑战,例如意外的搜索结果和人类书面文本表达的可变性。其他注意事项包括处理图像格式的书面文本,这些文本最终可能需要通过 OCR 转换为文本格式,尽管这项技术仍在开发中。物联网开始用于心脏监测、药物依从性警报、生活方式监测,并避免传统实验室因设备故障而发生灾难。这些技术将在未来的研究领域变得更加普遍,心胸外科医生应该了解这些技术的优势,将我们的研究推向更高的水平。构建强大的 NLP 搜索结果需要经验和技术理解,与数据管理团队进行有效的沟通是成功利用这些技术的关键步骤。在本系列的第二部分中,我们提供了利用第一部分介绍的高级分析工具进行的已发表研究的示例。我们将解释我们在提出研究问题、使用传统研究方法实现研究目标的障碍、克服障碍的工具以及研究结果方面的过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验